基于EC法的风浪联合作用主塔-基础体系极限荷载效应

涂志斌,黄铭枫,楼文娟

振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 125-134.

PDF(1674 KB)
PDF(1674 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 125-134.
论文

基于EC法的风浪联合作用主塔-基础体系极限荷载效应

  • 涂志斌,黄铭枫,楼文娟
作者信息 +

Extreme load effects on a bridge tower-basement system due to the joint actions of wind and wave based on EC method

  • Tu Zhi-bin,Huang Ming-feng,Lou Wen-juan
Author information +
文章历史 +

摘要

针对基于Rosenblatt映射变换的极限状态曲线计算困难的现状,提出了多维随机变量极限状态曲线的简化算法。该算法通过寻找同时满足边缘分布、联合分布和可靠指标的变量估计值,将随机变量条件分布函数及其逆函数的求解转化为边缘分布函数的求逆,从而达到简化极限状态曲线计算的目的。以某跨海大桥桥塔-基础体系为工程实例,以涠洲岛海洋站风浪同步观测资料为环境变量统计资料,通过基于Copula函数的联合分布模型构造了风浪联合分布函数,根据简化算法计算了风浪极限状态曲线,利用EC法估计了桥塔-基础体系的基底剪力极限荷载效应,并与外推法的估计结果进行了比较。结果表明,基于简化算法和EC法的跨海大桥桥塔-基础体系基底剪力极限荷载效应具有较高的准确性。

Abstract

A simplified algorithm was developed to construct the limit state line of several random variables, aiming to change the situation that the limit state line constructed by Rosenblatt transformation was difficult. By searching the expected values of variables which satisfied the marginal distributions, joint cumulative distribution and reliability index simultaneously, the simplified algorithm turned the calculation of conditional distribution function and its inverse function to the inverse function of marginal distribution, and then the construction of the limit state line was simplified. Taking a bridge tower-basement system as an engineering example and the wind-wave simultaneous observation data of Weizhou marine station as statistic sample, the joint cumulative distribution function of wind and wave was estimated by an copula function, the limit state line of wind and wave was constructed by the proposed algorithm, and the extreme load effects of the base shear force were estimated by EC method and compared with those estimated by a statistical extrapolation method. It is demonstrated that the extreme load effects estimated by EC method together with the simplified algorithm is precisely accurate.

 

关键词

极限荷载效应 / 极限状态曲线 / 风浪联合作用 / EC法 / Copula函数

Key words

Extreme load effect / limit state line / joint action of wind and wave / Environmental contour Method / Copula

引用本文

导出引用
涂志斌,黄铭枫,楼文娟. 基于EC法的风浪联合作用主塔-基础体系极限荷载效应[J]. 振动与冲击, 2017, 36(19): 125-134
Tu Zhi-bin,Huang Ming-feng,Lou Wen-juan. Extreme load effects on a bridge tower-basement system due to the joint actions of wind and wave based on EC method[J]. Journal of Vibration and Shock, 2017, 36(19): 125-134

参考文献

[1] Offshore standard (DNY-OS-J101). Design of offshore wind turbine structure, DET NORSKE VERITAS, 2010: 9-22.
[2] IEC 61400-1 Ed.3. Wind turbines-Part 1: Design requirements. Intl. Electrotechnical Commission: Geneva Switzerland, 2005: 19-32.
[3] 李锋. 海洋工程双变量环境条件设计参数估计[D]. 中国海洋大学, 2005:17-40.
LI Feng. Design parameter estimation of bivariate environmental conditions in ocean engineering [D]. Qingdao: Ocean University of China, 2005: 17-40.
[4] 周道成, 段忠东. 耿贝尔逻辑模型在极值风速和有效波高联合概率分布中的应用[J]. 海洋工程, 2003, 21(2): 45-51.
ZHOU Dao-cheng, DUAN Zhong-dong. The Gumbel-logistic model for joint probability distribution of extreme-value wind speeds and effective wave heights [J]. The Ocean Engineering, 2003, 21(2): 45-51.
[5] 欧进萍, 肖仪清, 段忠东, 等. 基于风浪联合概率模型的海洋平台结构系统可靠度分析[J]. 海洋工程, 2003, 21(4): 1-7.
OU Jin-ping, XIAO Yi-qing, DUAN Zhong-dong, et al. Structual system reliability analysis for offshore platforms based on the joint probabilistic model of wind and wave[J]. The Ocean Engineering, 2003, 21(4): 1-7.
[6] YUE S. The Gumbel logistic model for representing a multivariate storm event [J]. Advance in Water Resources, 2001, 24(2): 179-185.
[7] 刘伟. 基于最大熵分布的海洋平台环境条件联合重现值推算[D]. 青岛: 中国海洋大学, 2011: 64-87.
LIU Wei. Joint return values calculation of environmental conditions with maximum entropy distribution for offshore platform design [D]. Qingdao: Ocean University of China, 2011:64-87.
[8] GENES C, FAVRE A C.  Everything you wanted to know about Copula Modeling but were afraid to ask [J]. Journal of Hydrologic Engineering, 2007, 12(4):347-368.
[9] WIST H T, MYRHAUG D, RUE H. Statistical properties of successive wave heights ans successive wave periods [J]. Applied Ocean Research, 2005, 26(3-4): 114-136.
[10] SILVA-GONZÁLEZ F, HEREDIA-ZAVONI E, MONTES-ITURRIZAGA R. Development of environmental contours using Nataf distribution model [J]. Ocean Engineering, 2013, 58:27–34.
[11] 陶山山. 多维最大熵模型及其在海岸及海洋工程中的应用[D]. 青岛:中国海洋大学, 2013: 76-113.
TAO Shan-shan. Study on multivariate maximum entropy models and their application in coastal and ocean engineering [D]. Qingdao: Ocean University of China, 2013: 76-113.
[12] 董胜, 翟金金, 陶山山. 基于Archimedean Copula函数的风浪联合统计分析[J]. 中国海洋大学学报, 2014, 44(10): 134-141.
DONG sheng, ZHAI Jin-jin, TAO Shan-shan. The joint statistical analysis of wind and wave based on Archimedean Copula functions [J]. Periodical of Ocean University of China, 2014, 44(10): 134-141.
[13] 陈子燊. 波高与风速联合概率分布研究[J]. 海洋通报, 2011, 30(2): 158-163.
CHEN Zi-shen. Study on joint probability distribution of wave height and wind velocity[J]. Marine Science Bulletin, 2011, 30(2): 158-163.
[14] YANG X C, ZHANG Q H. Joint probability distribution of winds and waves from wave simulation of 20 years (1989-2008) in Bohai Bay [J]. Water Science and Engineering, 2013, 6(3): 296-307.
[15] ZHANG Y, BEER M, QUEK S T. Long-term performance assessment and design of offshore structures [J]. Computers and Structures, 2015, 154:101-115.
[16] IEC 61400-3. Wind turbines-Part 3: Design requirements for offshore wind turbines. Intl. Electrotechnical Commission, TC88 WG3 Committee Draft, 2005: 18-21.
[17] WINTERSTEIN S R, UDE T C, CORNELL C A,et al. Environmental parameters for extreme response: inverse FORM with omission factors [C]. // ICOSSAR-93, Innsbruck, August 1993.
[18] WINTERSTEIN S R, ENGEBRETSEN K. Reliability-based prediction of design loads and responses for floating ocean structures [C]. // OMAR’1998, Lisbon, June 1998.
[19] HAVER S, WINTERSTEIN S R. Environmental Contour Lines: A Method for Estimating Long Term Extremes by a Short Term Analysis[J]. Transactions - Society of Naval Architects and Marine Engineers, 2008, 116.
[20] SARANYASOONTORN K, MANUEL L. Design loads for wind turbines using the environmental contour method [J]. Journal of Solar Energy Engineering, 2006, 128(4):554-561.
[21] AGARWAL P, MANUEL L. Simulation of offshore wind turbine response for long-term extreme load prediction[J]. Engineering Structures, 2009, 31(10):2236-2246.
[22] HUSEBY A B, VANEM E, NATVIG B. A new approach to environmental contours for ocean engineering applications based on direct Monte Carlo simulations[J]. Ocean Engineering, 2013, 60(60):124-135.
[23] HUSEBY A B, VANEM E, NATVIG B. Alternative environmental contours for structural reliability analysis[J]. Structural Safety, 2015, 54:32-45.
[24] MONTES-ITURRIZAGA R, HEREDIA-ZAVONI E. Environmental contours using copulas[J]. Applied Ocean Research, 2015, 52:125-139.
[25] GHORBEL A, TRABELSI A. Energy portfolio risk management using time-varying extreme value copula methods[J]. Economic Modelling, 2014, 38: 470-485.
[26] TRIVEDI P K, ZIMMER D M. Copula modeling: an introduction for practitioners. Foundations and Trends in Econometrics [M]. Now Publishers, 2007: 53-70.
[27] SUNDARESAN A, VARSHNEY P K. Location estimation of a random signal source based on correlated sensor observations[J]. Signal Processing, IEEE Transactions on, 2011, 59(2): 787-799.
[28] RAGAN P, MANUEL L. Statistical extrapolation methods for estimating wind turbine extreme loads[J]. Journal of Solar Energy Engineering, 2008, 130(3): 1-19.
[29] TURKSTRA C J, MADSEN H O. Load combinations in condified structural design [J]. Journal of the Structural Division, 1980, 106(12): 2527-2543.
[30] YEO, D. Multiple Points-In-Time Estimation of Peak Wind Effects on Structures [J]. Journal of Structural Engineering, 2013, 139(3): 462-471.
[31] MYRHAUG D, ONG M C. Effect of Wave Age on Wind Gust Spectra Over Wind Waves[J]. Journal of Offshore Mechanics and Arctic Engineering, 2009, 131(3): 034501.
[32] DNV-RP-C205, Environmental conditions and environmental loads Recommended Practice. DNV, 2012.
[33] 涂志斌, 黄铭枫, 楼文娟. 风浪耦合作用下桥塔-基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(4): 601-610.
TU Zhi-bin, HUANG Ming-feng, LOU Wen-juan. Extreme load effects on a bridge tower-basement system due to the joint actions of wind and wave [J]. Journal of Zhejinag University (Engineering Science), 2016, 50(4): 601-610.

PDF(1674 KB)

Accesses

Citation

Detail

段落导航
相关文章

/