基于非局部理论的轴向运动粘弹性纳米板的参数振动及其稳定性

刘金建,谢锋,姚林泉,李成

振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 13-20.

PDF(949 KB)
PDF(949 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 13-20.
论文

基于非局部理论的轴向运动粘弹性纳米板的参数振动及其稳定性

  • 刘金建,谢锋,姚林泉,李成
作者信息 +

Vibration and stability in parametric resonance of an axially moving viscoelastic nanoplate base on nonlocal theory

  • LIU Jin-jian   XIE Feng   YAO Lin-quan   LI Cheng
Author information +
文章历史 +

摘要

研究了轴向运动粘弹性二维纳米板结构的非局部横向参数振动及其稳态响应。利用哈密顿原理推导了问题模型的控制方程,应用多尺度法分析了带有周期脉动成分的变速运动粘弹性纳米板的失稳现象。根据边界条件及复模态法可确定模态函数的表达,讨论了其特例匀速运动时固有频率与小尺度参数的关系,重点探讨了当脉动频率为两阶固有频率之和或者为某阶固有频率二倍时所发生的和型组合参数共振及主参数共振。结果表明:小尺度参数的存在使得轴向运动粘弹性纳米板的弯曲刚度及固有频率减小,并导致组合参数共振失稳区域减小但主参数共振区域增大,同时削弱了粘弹性系数对主参数共振区域的影响。同等条件下,粘弹性系数对组合共振区域的影响更为明显。

Abstract

The nonlocal transverse parametric vibration and steady-state response of axially moving viscoelastic two-dimensional nanoplate-like structures are studied. The Hamilton’s principle is employed to derive the governing partial differential equations of the mathematical model. The instable behaviors of axially moving viscoelastic nanoplate with a periodic pulsation velocity are addressed using the method of multiple scales. The modal functions are determined by some specific boundary conditions and the method of complex mode, and then the effects of small-scale parameter on the natural frequencies of the axially moving nanoplates with uniform velocity are discussed. Subsequently, the analyses are mainly focused on the instable regions caused by summation and principal parametric resonances, respectively, of which the summation parametric resonance occurs when the harmonic frequency approaches the sum of any two mode natural frequencies, while the principal parametric resonance occurs when the harmonic frequency approaches two times of certain mode natural frequency. It is shown that the existence of small-scale parameter contributes to reduce the bending stiffness and natural frequencies of axially moving viscoelastic nanoplates, and further decreases the instable regions of summation parametric resonance, while increases the instable regions of principal parametric resonance. On the other hand, the small-scale parameter softens the influence of viscoelasticity on the instable regions of principal parameter resonance. Moreover, the effect of viscoelasticity on the instability of summation parametric resonance is more obvious, ceteris paribus.

关键词

非局部弹性理论 / 轴向运动 / 粘弹性纳米板 / 多尺度法 / 参数稳定

Key words

nonlocal elasticity theory / axially moving / viscoelasticity nanoplate / the method of multiple scales / parameter stability

引用本文

导出引用
刘金建,谢锋,姚林泉,李成. 基于非局部理论的轴向运动粘弹性纳米板的参数振动及其稳定性[J]. 振动与冲击, 2017, 36(19): 13-20
LIU Jin-jian XIE Feng YAO Lin-quan LI Cheng . Vibration and stability in parametric resonance of an axially moving viscoelastic nanoplate base on nonlocal theory[J]. Journal of Vibration and Shock, 2017, 36(19): 13-20

参考文献

[1] CHEN L Q, YANG X D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports[J]. European Journal of Mechanics-A/Solids, 2006, 25(6): 996-1008.
[2] ZHANG G C, DING H, CHEN L Q, et al. Galerkin method for steady-state response of nonlinear forced vibration of axially moving beams at supercritical speeds[J]. Journal of Sound and Vibration, 2012, 331(7): 1612-1623.
[3] LIU D, XU W, XU Y. Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation[J]. Journal of Sound and Vibration, 2012, 331(17):  4045-4056.
[4] 胡宇达, 孙建涛, 杜国君. 轴向运动导电薄板的磁弹性振动[J]. 振动与冲击, 2013, 32(13): 34-38.
 HU Yuda, SUN Jiantao, DU Guojun. Magneto-elastic vibration of an axially moving current-conducting thin plate[J]. Journal of vibration and shock, 2013, 32(13): 34-38.(in Chinese)
[5] MARYNOWSKI K, GRABSKI J. Dynamic analysis of an axially moving plate subjected to thermal loading[J]. Mechanics Research Communications, 2013, 51: 67-71.
[6] 李成, 姚林泉. 轴向运动超薄梁的非局部动力学分析[J]. 工程力学, 2013, 30(4): 366-372.
 LI Cheng, YAO Linquan. Nonlocal dynamical analysis on axially travelling ultra-thin beams[J]. Engineering Mechanics, 2013, 30(4): 366-372. (in Chinese)
[7] TANG Y Q, CHEN L Q. Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed[J]. European Journal of Mechanics-A/Solids, 2013, 37: 106-121.
[8] SUI S H, CHEN L, LI C, LIU X P. Transverse vibration of axially moving functionally graded materials based on Timoshenko beam theory[J]. Mathematical Problems in Engineering, 2015, Article ID 391452, 9 pages
[9] YANG X D, ZHANG W. Nonlinear dynamics of axially moving beam with coupled longitudinal–transversal vibrations[J]. Nonlinear Dynamics, 2014, 78(4): 2547-2556.
[10] YAN Q, DING H, CHEN L Q. Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations[J]. Applied Mathematics and Mechanics, 2015, 36(8): 971-984.
[11] 李成澄, 赵凤群. 轴向运动变截面黏弹性梁的振动与稳定性分析[J].振动与冲击, 2016, 35(14): 107-111.
 LI Chengcheng, ZHAO Fengqun.Vibration and stability analysis of axially moving viscoelastic beam with varying section[J]. Journal of Vibration and Shock, 2016, 35(14): 107-111.(in Chinese)
[12] ERINGEN A C, EDELEN D G B. On nonlocal elasticity[J]. International Journal of Engineering Science, 1972, 10(3): 233-248.
[13] ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of applied physics, 1983, 54(9): 4703-4710.
[14] MURMU T, PRADHAN S C. Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity[J]. Journal of Applied Physics, 2009, 106(10): 104301.
[15] LI C, LIM C W, YU J L. Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load[J]. Smart Materials and Structures, 2011, 20(1): 015023 (7pages)..
[16] SHEN Z B, TANG H L, LI D K, et al. Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory[J]. Computational Materials Science, 2012, 61: 200-205.
[17] THAI H T. A nonlocal beam theory for bending, buckling, and vibration of nanobeams[J]. International Journal of Engineering Science, 2012, 52: 56-64.
[18] LIANG Y, HAN Q. Prediction of the nonlocal scaling parameter for graphene sheet[J]. European Journal of Mechanics-A/Solids, 2014, 45: 153-160.
[19] FU Y, ZHONG J. Nonlinear free vibration of core-shell nanowires with weak interfaces based on a refined nonlocal theory[J]. Acta Mechanica, 2015, 226(5): 1369-1377.

PDF(949 KB)

Accesses

Citation

Detail

段落导航
相关文章

/