基于波函数法的自由阻尼薄板与声学耦合响应

夏小均1,2,徐中明1,2,赖诗洋3,张志飞1,2,贺岩松1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 158-163.

PDF(962 KB)
PDF(962 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 158-163.
论文

基于波函数法的自由阻尼薄板与声学耦合响应

  • 夏小均1,2,徐中明1,2,赖诗洋3,张志飞1,2,贺岩松1,2
作者信息 +

The response of unconstrained damped vibro-acoustic system using wave based prediction technique

  • Xia Xiaojun1, 2, Xu Zhongming1, 2, Lai shiyang3, Zhang Zhifei 1, 2, He Yansong1, 2
Author information +
文章历史 +

摘要

对敷设自由阻尼薄板振动响应进行了分析,以复刚度为基础得到了在Kirchhoff理论下复合薄板振动控制方程。基于波函数法理论,推导了自由阻尼薄板振动分析模型以及包含自由阻尼结构与声腔的三维耦合模型的建模方法。以四边固支自由阻尼矩形板及耦合的结构声学系统为例,分别以波函数法与有限元法计算了其50-500Hz频段内的结构与声学响应。结果表明:波函数法能有效的应用于添加自由阻尼的薄板振动以及结构声耦合系统响应的预测与分析。相比于有限元法,其高精度、高收敛率的特点使波函数能有效解决更高频率的声振问题。

Abstract

The global governing vibration equation of unconstrained damped plate is induced with analysis of the complex stiffness and Kirchhoff theory. The methodology for predicting the vibration of unconstrained damped plate and the acoustic of coupled 3D vibro-acoustic system is derived based on wave base method. With a four edges clamped rectangular plate and box liked coupled system as numerical example, the out-plane displacement of unconstrained damped plate is presented. The response of selected reference point is calculated in the 50-500Hz by WBM and FEM respectively. The result of the two method validates that WBM is capable for predicting the vibration and acoustic response of unconstrained damped system effectively, and WBM is more efficient to deal with vibroacoustic problems comparing with FEM.
 

关键词

自由阻尼 / 波函数法 / 弯曲振动 / 结构声耦合

Key words

unconstrained damping / wave based method / bending vibration / structural-acoustic coupling

引用本文

导出引用
夏小均1,2,徐中明1,2,赖诗洋3,张志飞1,2,贺岩松1,2. 基于波函数法的自由阻尼薄板与声学耦合响应[J]. 振动与冲击, 2017, 36(19): 158-163
Xia Xiaojun1, 2, Xu Zhongming1, 2, Lai shiyang2, Zhang Zhifei 1, 2, He Yansong1, 2. The response of unconstrained damped vibro-acoustic system using wave based prediction technique[J]. Journal of Vibration and Shock, 2017, 36(19): 158-163

参考文献

[1] Deraemaeker, I. Babuska, Ph. Bouillard, Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions [J]. Int. J. Numer. Methods Engrg. 1999,46(4):471–499.
[2] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, P. Nithiarasu, the Finite Element Method – Vol. 1: Basic Formulation and Linear Problems[M], Butterworth-Heinemann, 2005.
[3] R. Lyon, R. DeJong, Theory and application of statistical energy analysis (2nd ed.) [M], Butterworth Heinemann 1995.
[4] J. M. Mencik and M. N. Ichchou. Wave finite elements in guided elastodynamics with internal fluid[J]. International Journal of Solids and Structures, 2007,44:2148–2167,
[5] L. Maxit and J.-L. Guyader. Extension of SEA model to subsystems with non-uniform modal energy distribution[J]. Journal of Sound and Vibration, 2003,265(2):337–358.
[6] A. Sestieri and A. Carcaterra. On the spurious solutions in complex envelope displacement analysis[J]. Journal of Sound and Vibration, 2001,240(2):293-302.
[7] P. Ladeveze, L. Arnaud, P. Rouch, and C. Blanz ` e. The variational theory of complex rays for the calculation of medium- frequency vibrations[J]. Engineering Computations, 2001, 18(1,2):193–214.
[8] R.S. Langley and J.A. Cordioli. Hybrid deterministic-statistical analysis of vibroacoustic system domain couplings on statistical components[J]. Journal of Sound and Vibration, 2009, 321:893–912,
[9] B. R. Mace. Statistical energy analysis, energy distribution models and system modes[J]. Journal of Sound and Vibration, 2003, 264:391–409.
[10] Desmet, w. A wave based prediction technique for coupled vibro-acoustic analysis[D]. Leuven, 1998.
[11] Vanmaele, C., D. Vandepitte. An efficient wave based prediction technique for plate bending vibrations[J]. Computer Methods in Applied Mechanics and Engineering, 2007 ,196(33-34): 3178-3189.
[12] B. Van Genechten, O. Atak, B. Bergen, E. Deckers, S. Jonckheere, J. Lee, A. Maressa, K. Vergote, B. Pluymers, D. Vandepitte, and W Desmet. An efficient wave based method
for solving helmholtz problems in three-dimensional bounded domains[J]. Engineering Analysis with Boundary Elements, 2012,36(1):63–75.
[13] W. Desmet, B. Van Hal, P. Sas, and D. Vandepitte. A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems[J]. Advances in Engineering Software, 2002,33(7-10):527–540.
[14] E. Deckers, N.-E. Horlin, D. Vandepitte, and W. Desmet. A wave based method for the efficient solution of the 2d poroelastic biot equations[J]. Computer Methods in Applied
Mechanics and Engineering, 2012, 201-204:245–262,.
[15] 何雪松,黄其柏,胡溧.WBM 法在薄板弯曲振动分析中的应用[J].华中科技大学学报(自然科学版),2008,36(7):97-99.
HE Xue song, HUANG Qi bai, HU Li. Application of wave based method to plate bending vibration analysis [J]. Huangzhong Univ. of Sci. &Tech. (Natural Science Edition), 2008, 36(7):97 -99.
[16] Peng Weicai, He Zeng, Li Peng, Wang Jiaqiang. A prediction technique for dynamic analysis of flat plates in the Mid-Frequency Range. Acta Mechanica Solida Sinica, 2007, 20(4): 333-341
[17] 何锃, 彭伟才与王加强, WB法分析结构与声耦合问题. 华中科技大学学报(自然科学版), 2007(08): 119-121.
He Zeng,Peng Weicai, Wang Jiaqiang. Wave based method for coupled structural—acoustic analysis[J]. Huangzhong Univ. of Sci. &Tech. (Natural Science Edition).2007,35(8): 119-121.
[18] 桂洪斌,赵德有,金咸定. 自由阻尼层加筋板的稳态简谐响应分析[J]. 上海交通大学学报.2002,36(11):1544-1547.
GUI Hongbin, ZHAO Deyou, JIN Xianding. Steady — State Harmonic Response Analys is of Stiffened Plate with Unconstrained Damped Layer[J]. Journal of Shanghai jiaotong university, 2002,36(11):1544-1547.
[19] C. V. Ramachandra reddy. et al., Response of plates with unconstrained layer damping treatment to random acoustic excitation[J]. Journal of Sound and Vibration,1980,69(l), 35-43.

PDF(962 KB)

Accesses

Citation

Detail

段落导航
相关文章

/