一种新型半主动协调控制对高速动车组曲线通过性能的影响

刘永强1,3 杨绍普1,3 廖英英2,3 李军1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 164-168.

PDF(894 KB)
PDF(894 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 164-168.
论文

一种新型半主动协调控制对高速动车组曲线通过性能的影响

  • 刘永强1,3 杨绍普1,3 廖英英2,3 李军1
作者信息 +

A New Semi-active Combination Control and Its Effect on Curving Performance of EMUs

  •  Liu Yong-qiang1,3, Yang Shao-pu1,3, Liao Ying-ying2,3, Li Jun1
Author information +
文章历史 +

摘要

针对二系横向减振器和抗蛇行减振器在进行单独控制时出现的效果单一问题,提出了一种新型半主动协调控制方法,可协调直线和曲线线路条件下的车辆综合动力学性能。首先,建立了300公里级高速动车组的动力学模型,其中二系横向和抗蛇行减振器均进行了参数化处理;构建了横向和抗蛇行减振器的半主动控制模型,并模拟了动车组通过曲线轨道时的真实工况。经过仿真对比,发现单独对横向减振器施加半主动控制时,虽然能有效提高平稳性能,但会使安全性能恶化;而单独对抗蛇行减振器进行控制时,虽然使曲线通过性能提高,但会降低横向平稳性。有鉴于此,提出了一种针对横向减振器和抗蛇行减振器的新型半主动协调控制策略。经过仿真分析,发现该新型协调控制策略可有效解决上述问题,保证列车在曲线通过时,在确保安全性能的同时具有良好的平稳性能。
 

Abstract

A new semi-active combination control is proposed in this paper, and the problems from semi-active lateral damper (SLD) control and semi-active yaw damper (SYD) control can also be solved. Firstly, a 300 km/h Electric Multiple Units (EMUs) dynamic model is built, and parameterized SLD and SYD models are achieved. Secondary, the semi-active control strategies are realized in SLD and SYD model, and some curve-passing conditions of EMUs are simulated. After comparing the two control results, SLD control can improve lateral ride index of vehicle but the safety index, and SYD control can improve safety index but the lateral ride index. Finally, a new SLD-SYD combination control strategy is proposed and applied in EMUs model. The simulation results show that the new control strategy can solve the problems above, and improve safety index and lateral ride index at the same times.
 

Key words

Electric Multiple Units / semi-active control / lateral damper / yaw damper

引用本文

导出引用
刘永强1,3 杨绍普1,3 廖英英2,3 李军1. 一种新型半主动协调控制对高速动车组曲线通过性能的影响[J]. 振动与冲击, 2017, 36(19): 164-168
Liu Yong-qiang1,3, Yang Shao-pu1,3, Liao Ying-ying2,3, Li Jun1. A New Semi-active Combination Control and Its Effect on Curving Performance of EMUs[J]. Journal of Vibration and Shock, 2017, 36(19): 164-168

参考文献

[1] 刘宏友, 曾京, 李莉, 等. 高速列车二系横向阻尼连续可调式半主动悬挂系统的研究[J]. 中国铁道科学, 2012, 33(4): 69-74.
    Liu HY, Zeng J, Li L, et al. Study on secondary lateral continuous adjustable damping semi-active suspension device for high-speed train[J]. Chinese Railway Science, 2012, 33(4): 69-74.
[2] 李广军, 金炜东, 陈春俊. 列车横向半主动悬挂系统变论域模糊控制[J]. 光学精密工程, 2013, 21(12): 3298-2206.
    Li GJ, Jin WD, Chen CJ. Variable universe fuzzy control of train lateral semi-active suspension system[J]. Optics and Precision Engineering, 2013, 21(12): 3298-2206.
[3] 马新娜, 杨绍普, 邸书灵. 基于磁流变阻尼器的高速机车横向半主动振动控制研究[J]. 振动与冲击, 2009, 28(7): 126-130.
    Ma XN, Yang SP, Di SL. Semi-active lateral vibration control of a high-speed locomotive based on MR damper[J]. Journal of Vibration and Shock, 2009, 28(7): 126-130.
[4] Kwak M K, Lee J H, Yang D H, et al. Hardware-in-the-loop simulation experiment for semi-active vibration control of lateral vibrations of railway vehicle by magneto-rheological fluid damper[J]. Vehicle System Dynamics, 2014, 52(7): 891-908.
[5] Kim H C, Choi S B, Lee G S, et al. Performance analysis of a semi-active railway vehicle suspension featuring MR dampers[C]//SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2014: 905711-905711-9.
[6] Shin Y J, You W H, Hur H M, et al. H∞ control of railway vehicle suspension with MR damper using scaled roller rig[J]. Smart Materials and Structures, 2014, 23(9): 95023-95034.
[7] Wang W L, Yu D S, Huang Y, et al. A locomotive’s dynamic response to in-service parameter variations of its hydraulic yaw damper[J]. Nonlinear Dynamics, 2014, 77(4): 1485-1502.
[8] 何远, 王勇. 抗蛇行减振器串联刚度对高速动车组运行稳定性的影响[J]. 机车电传动, 2015 (3): 26-29.
    He Y, Wang Y. Influence of Anti-yaw Damper Series Stiffness on Running Stability of High-speed EMUs[J]. Electric Drive for Locomotive, 2015 (3): 26-29.
[9] 刘永强, 廖英英, 杨绍普, 等. 一种抗蛇行减振器控制系统在高速动车组中的仿真应用[J]. 石家庄铁道大学学报: 自然科学版, 2015, 28(2): 68-72.
    Liu YQ, Liao YY, Yang SP, et al. Simulation application of a way control system in high-speed electric multiple units[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2015, 28(2): 68-72.
[10] 中华人民共和国铁道部. TB/T 3115-2005机车车辆动力学性能台架试验方法[S]. 北京:中国铁道出版社, 2005.
    Ministry of Railways of the People's Republic of China. TB/T 3115-2005 Tests for Dynamics Performance of Locomotives and Rolling Stocks on Test Rig[S]. Beijing: China Railway Publishing House, 2005.
[11] 廖英英,刘金喜,刘永强,等. 半主动控制与时滞对高速铁道车辆平稳性、稳定性及安全性的影响[J]. 振动与冲击,2011,30(6):58-62.
    Liao YY, Liu JX, Liu YQ, et al. Effects of Semi-Active Control And Time Delay on Riding Quality, Running Stability And Safety of High-Speed Railway Vehicle[J]. Journal of Vibration and Shock, 2011,30(6):58-62.
[12] 刘永强. 基于磁流变阻尼器的高速动车组半主动控制与时滞分析[D]. 北京:北京交通大学, 2011.
    Liu YQ. Semi-active control of high-speed EMUs and time delay analysis based on magnetorheological damper[D]. Beijing: Beijing Jiaotong University, 2011.
[13] 刘永强,杨绍普,廖英英. 高速动车组悬挂系统横向半主动控制仿真分析[J]. 振动与冲击, 2010, 29(9): 51-54,96.
    Liu YQ, Yang SP, Liao YY. Simulation Analysis on Lateral Semi-active Control of Suspension System for High-Speed EMUs[J]. Journal of Vibration and Shock, 2010, 29(9): 51-54,96.
[14] 张卫华, 李艳, 宋冬利. 高速列车运动稳定性设计方法研究[J]. 西南交通大学学报, 2013, 48(1):1-9.
    Zhang WH, Li Y, Song DL. Design Methods for Motion Stability of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2013, 48(1):1-9.
[15] 吴娜, 曾京, 王亦佳. 轮轨磨耗状态下悬挂参数失效对车辆动力学性能的影响[J]. 振动与冲击, 2015, 34(5): 82-87.
    Wu N, Zeng J, Wang YJ. Effect of wheel /rail wear and suspension system failure on vehicle dynamic performance[J]. Journal of Vibration and Shock, 2015, 34(5): 82-87.  

PDF(894 KB)

Accesses

Citation

Detail

段落导航
相关文章

/