超弹性形状记忆合金阻尼器的减振特性研究

张振华1,绳飘1, 王钦亭1,吴志强2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 169-184.

PDF(609 KB)
PDF(609 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 169-184.
论文

超弹性形状记忆合金阻尼器的减振特性研究

  • 张振华1,绳飘1, 王钦亭1,吴志强2
作者信息 +

Research on vibration reduction characteristics of the superelastic shape memory alloy damper

  • Zhang Zhenhua1,Sheng piao1, Wang Qinting1,Wu Zhiqiang2
Author information +
文章历史 +

摘要

研究了环境变量(温度和外激励幅值)对超弹性形状记忆合金阻尼器减振特性的影响。用多线性本构模型来表示SMA伪弹性,建立了SMA振动系统的动力学模型。通过平均法求解了方程主共振的幅频响应解,并用数值方法验证其计算的准确性。通过定义SMA振动系统与对应线性系统的共振幅值比、共振频率比来表示SMA阻尼器的减振和调频效果,并研究了环境变量与其的定量关系。研究结果表明:温度升高对SMA减振和调频是不利的;而外激励幅值在一定的范围内取值时,SMA阻尼器具有良好的减振和调频效果。此研究结果可为SMA阻尼器使用环境条件的选择提供参考。

Abstract

In order to choose the reasonable application environment of shape memory alloy damper, the influences of environment parameters such as temperature and amplitude of excitation on vibration reduction characteristics of the shape memory alloy damper are investigated. The dynamic equation of the vibration system is firstly established as the bilinear model is adopted to describe the superealsticity of SMA, and then transform the equation into the dimensionless one. Subsequently, the primary resonance amplitude-frequency response equation of the dynamic system is acquired by the average method, and the accuracy of the one is confirmed by the numerical method. Finally, the concepts of resonance amplitude ratio and resonance frequency ratio between the system with SMA damper and the corresponding linearization system are defined to express respectively the effects of vibration reduction and frequency tuning of SMA damper, and the relationships between the environment parameters and the effects are studied. The results suggest that the vibration reduction effect will be weaken as the temperature increasing, and the SMA damper will work well in a certain range of excitation amplitude. The results will give the guide to choose the application environment for the SMA damper.
 

关键词

形状记忆合金 / 伪弹性 / 温度 / 减振

引用本文

导出引用
张振华1,绳飘1, 王钦亭1,吴志强2. 超弹性形状记忆合金阻尼器的减振特性研究[J]. 振动与冲击, 2017, 36(19): 169-184
Zhang Zhenhua1,Sheng piao1, Wang Qinting1,Wu Zhiqiang2. Research on vibration reduction characteristics of the superelastic shape memory alloy damper[J]. Journal of Vibration and Shock, 2017, 36(19): 169-184

参考文献

[1] Graesser EJ, Cozzarelli FA. Shape memory alloys as newmaterials for aseismic isolation [J]. J EngMech ASCE, 1991, 117(11):2590–2608.
[2] 薛素铎,石光磊,庄鹏. SMA复合摩擦阻尼器性能的试验研究[J]. 地震工程及工程振动,2007,27(2):145-151
XueSuduo,Shi Guanlei,Zhuang Peng. Performance testing of SMA incorporated friction dampers [J]. Earthquake Engineering and Engineering Vibration, 2007,27(2): 145-151
[3] 刘海卿,崔衍斌,欧进萍,王学庆. SMA复合支座一巨型框架结构体系减震效果分析[J]. 地震工程与工程振动, 2008, 28(6): 239-244
Liu Haiqin,Cui Yanbin,OuJinpin,Wang Xueqin. Damping effect analysis of mega—frame structure based onSMA compound bearing[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(6): 239-244
[4] Qian H, Li H, Song G. Experimental investigations of building structure with a superelastic shape memory alloy friction damper subject to seismic loads[J]. Smart Materials and Structures, 2016, 25(12): 125026.
[5] Chou C C, Tsai W J, Chung P T. Development and validation tests of a dual-core self-centering sandwiched buckling-restrained brace (SC-SBRB) for seismic resistance[J]. Engineering Structures, 2016, 121(8): 30-41
[6] Shinozuka M, Chaudhuri S R, Mishra S K. Shape memory alloy supplemented lead rubber bearing (SMA-LRB) for seismic isolation[J]. Probabilistic Engineering Mechanics, 2015, 41(6): 34-45.
[7] Khodaverdian A, Ghorbani-Tanha A K, Rahimian M. An innovative base isolation system with Ni–Ti alloy and its application in seismic vibration control of Izadkhast Bridge [J]. Journal of Intelligent Material Systems and Structures ,2012, 23(8): 897–908
[8] Dezfuli F H, Alam M S. Seismic vulnerability assessment of a steel-girder highway bridge equipped with different SMA wire-based smart elastomeric isolators[J]. Smart Materials and Structures, 2016, 25(7): 075039.
[9] Huang H, Chang W S, Mosalam K M. Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive inservice vibration[J]. Structural Control and Health Monitoring, 2016.
[10] Ozbulut O E, Mir C, Moroni M O, et al. A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications[J]. Smart Materials & Structures, 2007, 16(3):818-829(12).
[11] Ozbulut OE, Hurlebaus S. Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects [J]. Engineering Structures, 2010, 32(1): 238-249
[12] Tanaka K, Nagaki S. A thermomechanical description of materials with internal variables in the process of phase transitions [J]. Ing Arch, 1982, 51(5): 287-299
[13] Liang C, Rogers C A. A multi—dimensional constitutive model for shape memory alloys [J].  Journal of Engineering Mathematics, 1992, 26(3): 429-443
[14] Brinson L C, Huang M S. Simplifications and comparisons of shape memory alloy constitutive models [J]. Journal of Intelligent Material Systems and Structures, 1996, 7(1): 108- 114
[15] 陈鑫,李爱群,左晓宝. 超弹性形状记忆合金简化多维本构模型[J]. 东南大学学报(自然科学版), 2009, 39(4): 813-818
Chen Xin, Li Aiqun, ZuoXiaobao. Simplified multidimensional constitutive modelof superelasticity shape memory alloy [J].Journal of southeast university (Natural Science Edition), 2009, 39(4):813-818
[16] Motahari SA, Ghassemieh M. Multilinear one-dimensional shape memory material model for use in structural engineering applications[J]. Engineering Structures, 2007, 29(6): 904–913

PDF(609 KB)

Accesses

Citation

Detail

段落导航
相关文章

/