复合式低频隔振器的理论建模及其性能分析

吴庭1,王林翔2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 232-235.

PDF(589 KB)
PDF(589 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 232-235.
论文

复合式低频隔振器的理论建模及其性能分析

  • 吴庭1,王林翔2
作者信息 +

Design and Performance Analysis of Composite Low-frequency Vibration Isolator

  • Wu Ting1   WANG Lin-xiang2
Author information +
文章历史 +

摘要

抑制低频振动是当前振动领域的一个热点问题,将惯容器与液压蓄能器结合在一起,同时利用形状记忆合金弹簧的超弹性,设计了一种将惯容器和拟零刚度隔振结合的复合式超低频隔振器。说明了超低频隔振的原理,分析了隔振器的力传递比,研究了惯容器惯容值以及弹簧刚度对系统谐振频率的影响。计算结果表明,所设计的超低频隔振器的谐振频率可以降低至1Hz以内。

Abstract

In the current paper, a hybrid vibration isolator is proposed by combining the quasi-zero-stiffness principle with the inerter. The inerter is employed to increase the effective mass for the isolator while the quasi-zero-stiffness part is to decrease the dynamic stiffness of the restoring elements. A superelastic shape memory alloy spring is integrated into the device.  Low-frequency vibration isolation mechanism is specified. Force transmission ratio is analyzed and simulated. It is shown by simulation that the proposed vibration isolator could have a resonant frequency lower than 1 Hz. The influence of parameters on the system response are discussed.

 

关键词

拟零刚度 / 惯容器 / 超弹性 / 超低频隔振

Key words

Quasi-zero-stiffness / Inerter / superelasticity / Low-frequency vibration

引用本文

导出引用
吴庭1,王林翔2. 复合式低频隔振器的理论建模及其性能分析[J]. 振动与冲击, 2017, 36(19): 232-235
Wu Ting1 WANG Lin-xiang2 . Design and Performance Analysis of Composite Low-frequency Vibration Isolator[J]. Journal of Vibration and Shock, 2017, 36(19): 232-235

参考文献

[1] Rivin E I, Rivin E I. Passive vibration isolation[M]. New York: Asme press, 2003.
[2] 张利国, 张嘉钟, 贾力萍, 等. 空气弹簧的现状及其发展[J]. 振动与冲击, 2007, 26(2): 146-151.
ZHANG Li-guo, ZHANG Jia-zhong, JIA Li-ping. Current state and development of air spring [J]. Journal of Vibration and Shock, 2007, 26(2): 146-151.
[3] 欧进萍. 结构振动控制: 主动, 半主动和智能控制[M]. 科学出版社, 2003.
OU Jin-ping. Structural vibration and control: active, semi-active and intelligent control [M].
[4] 杜华军, 黄文虎, 邹振祝. 航天支架结构的被动振动控制 Ξ[J]. 应用力学学报, 2002, 19(3). Science Press, 2003.
DU Hua-jun, HUANG Wen-hu, ZOU Zhen-zhu. Passive vibration control of aerospace supporterΞ[J]. Chinese Journal of Applied Mechanics, 2002, 19(3). Science Press, 2003.
[5] Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3): 678-689.
[6] Le T D, Ahn K K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J]. Journal of Sound and Vibration, 2011, 330(26): 6311-6335.
[7] 刘兴天, 孙靖雅, 肖锋, 等. 准零刚度微振动隔振器的原理和性能研究[J]. 振动与冲击, 2013, 32(21): 69-73.
LIU Xing-tian,SUN Jing-ya,XIAO Feng. Principle and performance of a quasi-zero stiffness isolator for micro-vibration isolation[J]. Journal of Vibration and Shock, 2013, 32(21): 69-73.
[8] Mizuno T, Takasaki M, Kishita D, et al. Vibration isolation system combining zero-power magnetic suspension with springs[J]. Control Engineering Practice, 2007, 15(2): 187-196.
[9] Carrella A, Brennan M J, Waters T P, et al. On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal of Sound and Vibration, 2008, 315(3): 712-720.
[10] Smith M C. Synthesis of mechanical networks: the inerter[J]. Automatic Control, IEEE Transactions on, 2002, 47(10): 1648-1662.
[11] 张孝良, 陈龙, 聂佳梅, 等. 2 级串联型 ISD 悬架频响特性分析与试验[J]. 江苏大学学报: 自然科学版, 2012, 33(3): 255-258.
ZHANG Xiao-liang,CHEN Long,NIE Jia-mei. Analysis and experiment of frequency response characteristics of two-stage series-connected ISD suspension[J]. Journal of Jiangsu University: Natural Science Edition, 2012, 33(3): 255-258.
[12] 陈龙, 张孝良, 聂佳梅, 等. 基于半车模型的两级串联型 ISD 悬架性能分析[J]. 机械工程学报, 2012, 48(6): 102-108.
CHEN Long,ZHANG Xiao-liang,NIE Jia-mei. Performance Analysis of Two-stage Series-connected Inerter-spring-damper Suspension Based on Half-car Model[J]. Journal of Mechanical Engineering, 2012, 48(6): 102-108.
[13] 陈龙, 任皓, 汪若尘, 等. 液力式惯容器力学性能仿真与试验研究[J]. 振动与冲击, 2014, 33(12): 87-92.
CHEN Long, REN Hao, WANG Ruo-chen. Simulations and tests for mechanical properties of a hydraulic inerter[J]. Journal of Vibration and Shock, 2014, 33(12): 87-92.
[14] Xu T. Design and Analysis of a Shock Absorber with a Variable Moment of Inertia Flywheel for Passive Vehicle Suspension[D]. University of Ottawa, 2013.
[15] Hu Y, Li C, Chen M Z Q. Optimal control for semi-active suspension with inerter[C]//Control Conference (CCC), 2012 31st Chinese. IEEE, 2012: 2301-2306.
[16] Zhang X J, Ahmadian M, Guo K H. On the benefits of semi-active suspensions with inerters[J]. Shock and Vibration, 2012, 19(3): 257-272.
[17] Saadat S, Salichs J, Noori M, et al. An overview of vibration and seismic applications of NiTi shape memory alloy[J]. Smart materials and structures, 2002, 11(2): 218.
[18] 王惠民. 流体力学基础[M]. 清华大学出版社, 2005.
WANG Hui-min. Elementary fluid mechanics[M]. Tsinghua University Press, 2005.
[19] Lagoudas D C, Khan M M, Mayes J J, et al. Modelling of shape memory alloy springs for passive vibration isolation[J]. Asme, 2001.

PDF(589 KB)

Accesses

Citation

Detail

段落导航
相关文章

/