利用分离式Hopkinson压杆试验装置,进行了冻结黏土在单轴与主动围压两种状态下的动态冲击压缩试验,对比分析了单轴与主动围压状态下冻结黏土的动态应力-应变曲线、动态抗压强度和破坏模式。研究结果表明,单轴状态下,温度为-15 ℃时,动态应力-应变曲线可分为弹性阶段、塑性阶段和破坏阶段。主动围压状态下,-5 ℃和-15 ℃的动态应力-应变曲线可分为弹性阶段、塑性阶段和破坏阶段。在相同应变率和冻结温度的条件下,主动围压状态下冻结黏土的动态抗压强度均高于无围压状态,动态抗压强度随着主动围压的增加而增大。当冻结温度和围压相同的条件下,动态抗压强度随应变率的提高而增大。单轴状态下,温度为-5 ℃时,冻结黏土呈塑性破坏,温度为-15 ℃时,冻结黏土呈脆性破坏。
Abstract
The dynamic impact test under uniaxial loading and confining pressure states of artificial frozen clay have been carried out by splitting Hopkinson pressure bar equipment. The dynamic stress-strain curves, the dynamic compressive strength and failure modes of artificial frozen clay under two experiment conditions have been analyzed. The result shows that under uniaxial loading state at -15 ℃, the dynamic stress-strain curves can be divided into three stages: elastic stage, plastic stage and failure stage. Under confining pressure state, the dynamic stress-strain curves can be divided into three stages: elastic stage, plastic stage and failure stage at -5 ℃ and -15 ℃. At the same strain rate and freezing temperature, the dynamic compressive strength under confining pressure state is larger than that in uniaxial loading state, and it exhibits the positive confining pressure and strain rate sensitivity. Under uniaxial loading state, the failure modes are plastic failure and brittle failure for artificial frozen clay at -5 ℃ and -15 ℃, respectively.
关键词
动力学 /
冻结黏土 /
SHPB /
围压 /
动态抗压强度
{{custom_keyword}} /
Key words
dynamic mechanics /
artificial frozen clay /
SHPB /
confining pressure /
dynamic compressive strength
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马芹永. 冻土爆破性与可钻性试验与其应用[M]. 北京:科学出版社,2007.
[2] 马芹永. 人工冻土动态力学特性研究现状及意义[J]. 岩土力学,2009,30(增刊):10 – 14.
MA Qin-yong. Research status of dynamic properties of artificial frozen soil and its significance[J]. Rock and Soil Mechanics, 2009, 30(Supp.): 10 – 14.
[3] 谭仪忠,刘元雪,张裕,等. 高寒高海拔多年冻土地区抗侵彻深度研究[J]. 振动与冲击,2015,34(22):9 - 12.
TAN Yi-zhong, LIU Yuan-xue, ZHANG Yu, et al. Penetration depth of projectile body into high-cold and high-altitude permafrost area[J]. Journal of Vibration and Shock, 2015, 34(22): 9 - 12.
[4] 孙义强,孟上九,王兴隆,等. 动荷载作用下冻土试验技术及冻土变形初步研究[J]. 地震工程与工程振动,2016,36(1):169 - 175.
SUN Yi-qiang, MENG Shang-jiu, WANG Xing-long, et al. Preliminary study on testing techniques and deformation of frozen soil under dynamic loading[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(1): 169 - 175
[5] MOO Y L, FOSSUM A, Laurence S C, et al. Frozen soil material testing and constitutive modeling[R]. Albuquerque, New Mexico: Sandia National Laboratories, 2002.
[6] 陈柏生,胡时胜,马芹永,等. 冻土动态力学性能的实验研究[J]. 力学学报,2005,37(6):724 - 728.
CHEN Bo-sheng, HU Shi-sheng, MA Qin-yong, et al. Experimental research of dynamic mechanical behaviors of frozen soil [J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6):724 - 728.
[7] Ma Q Y. Experimental analysis of dynamic mechanical properties for artificially frozen clay by the split hopkinson pressure bar[J]. Journal of Applied Mechanics and Technical Physics, 2010, 5(3): 448 - 452.
[8] 马芹永,袁璞,陈文峰,等. 人工冻土单轴与围压状态动力学性能对比分析[J]. 地下空间与工程学报,2014,10(1):26 – 29.
MA Qin-yong, YUAN Pu, CHEN Wen-feng, et al. Comparative analysis on dynamic mechanical properties of artificial frozen soil under uniaxial load and confining pressure[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(1): 26 – 29.
[9] 马芹永,张经双,陈文峰,等. 人工冻土围压SHPB试验与冲击压缩特性分析[J]. 岩土力学,2014,35(3):637 – 640.
MA Qin-yong, ZHANG Jing-shuang, CHEN Wen-feng, et al. Analysis of SHPB test and impact compression in confining pressure for artificial frozen soil[J]. Rock and Soil Mechanics, 2014, 35(3): 637 – 640.
[10] XIE Qi-jun, ZHU Zhi-wu, KANG Guo-zheng. Dynamic stress-strain behavior of frozen soil: Experiments and modeling[J]. Cold Regions and Technology, 2014, 106-107: 153 - 160.
[11] 宫风强,李夕兵,饶秋华,等. 岩石SHPB试验中确定试样尺寸的参考方法[J]. 振动与冲击,2013,32(17):24 - 28.
GONG Feng-qiang, LI Xi-bing, RAO Qiu-hua, et al. Reference method for determining sample size in SHPB tests of rock materials[J]. Journal of Vibration and Shock, 2013, 32(17): 24 - 28.
[12] 宋力,胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击,2005,25(4):368 - 373.
SONG Li, HU Shi-sheng. Two wave and three wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005, 25(4): 368 - 373.
[13] 袁璞,马芹永,张海东. 轻质泡沫混凝土SHPB试验与分析[J]. 振动与冲击,2014,33(17):116 - 119.
YUAN Pu, MA Qin-yong, ZHANG Hai-dong. SHPB tests for light weight foam concrete[J]. Journal of Vibration and Shock, 2014, 33(17): 116 - 119.
[14] 李为民,许金余,沈刘军,等. Φ100mmSHPB应力均匀及恒应变率加载试验技术研究[J]. 振动与冲击,2008,27(2):129 - 132.
LI Wei-min, XU Jin-yu, SHEN Liu-jun, et al. Study on 100-mm-diameter SHPB techniques of dynamic stress equilibrium and nearly constant strain rate loading[J]. Journal of Vibration and Shock, 2008, 27(2): 129 - 132.
[15] 马巍,吴紫汪,盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报,1995,17(5):7 – 11.
MA Wei, WU Zi-wang, SHENG Yu. Effect of confining pressure on strength behaviour of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 7 – 11.
[16] 孙星亮,汪稔,胡明鉴,等. 低围压下冻结粉质黏土的三轴强度及变形分析[J]. 岩土力学,2005,26(10):1623 – 1627.
SUN Xing-liang, WANG Ren, HU Ming-jian, et al. Triaxial strength and deformation properties of frozen silty clay under low confining pressure[J]. Rock and Soil Mechanics, 2005, 26(10): 1623 – 1627.
[17] 谢定义. 土动力学[M]. 西安:西安交通大学出版社,1988.
[18] 齐吉琳,马巍. 冻土的力学性质及研究现状[J]. 岩土力学,2010,31(1):133 – 142.
QI Ji-lin, MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 2010, 31(1): 133 – 142.
[19] 马巍,王大雁. 中国冻土力学研究50年回顾与展望[J]. 岩土工程学报,2012,34(4):625 – 640.
MA Wei, WANG Da-yan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625 – 640.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}