为研究2A16铝合金的中应变率力学性能及热处理状态对其应变率敏感性的影响,利用电子万能试验机和高速液压伺服试验机对其(O状态和T4状态)进行常温下准静态和中应变率力学性能试验,得到不同应变率下的应力应变曲线,并基于修正的Johnson-Cook 本构模型对其进行拟合。结果表明:在应变率10-4~102s-1范围内,热处理状态对2A16铝合金的应变率敏感性有较大影响,其中2A16-O状态铝合金的应变率敏感性较强,而2A16-T4状态铝合金的应变率敏感性较弱,但两种材料均具有较强的应变硬化效应;此外,修正Johnson-Cook 本构模型的拟合结果与试验结果吻合很好,能够很好表征材料的动态力学行为。
Abstract
In order to study the dynamic mechanical property of 2A16 aluminum alloy and the influence of heat treatment on its strain rate sensitive property, tests for 2A16 aluminum alloy(heat-treated condition O and T4) under quasi-static and intermediate strain rate were performed by using an electronic universal testing machine and a high velocity hydraulic servo-testing machine at room temperature. The stress-strain curves under different strain rates were obtained, and a modified Johnson-Cook constitutive model was fitted. The results show that the heat-treated condition has a big influence on the strain rate sensitive property of 2A16 aluminum alloy between 10-4~102s-1, and the strain rate hardening effect of 2A16-O aluminum alloy is obvious but which for 2A16-T4 aluminum alloy is not obvious, in addition, the strain hardening effect is obvious for both of the materials between 10-4~102s-1. Moreover, the modified Johnson-Cook constitutive model can predict the test results very well.
关键词
2A16铝合金 /
热处理状态 /
中应变率 /
应变率效应 /
Johnson-Cook模型。
{{custom_keyword}} /
Key words
2A16 aluminum alloy /
heat-treated condition /
intermediate strain rate /
strain rate effect /
Johnson-Cook constitutive model.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢灿军,童明波,刘富等,7075 -T6 铝合金动态力学试验及本构模型研究[J],振动与冲击,2014,33(18):100-114
XIE Can-jun,TONG Ming-bo,LIU Fu,etc. Dynamic tests and constitutive model for 7075-T6 aluminum alloy [J]. Journal of Vibration and Shock, 2014, 33(18):110-114.
[2] T. Masuda, T. Kobayashi, L. Wang, H. Toda. Effects of Strain Rate on Deformation Behavior of A6061-T6. Materials Science Forum. 2003,426~432(1):285~90
[3] 朱耀,AA 7055 铝合金在不同温度及应变率下力学性能的实验研究[D]。哈尔滨工业大学,工学博士论文,2010
Zhu Yao, EXPERIMENTAL RESEARCH ON MECHANICALPROPERTIES OF AA 7055 ALUMINUM ALLOYS AT DIFFERENT TEMERATRUES AND STRAIN RATES [D], Harbin Institute of Technology, Doctor of Engineering, 2010
[4] 李娜,李玉龙,郭伟国. 3种铝合金材料动态性能及其温度相关性对比研究[J]. 航 空 学 报,2008,29(4):903-908.
Li Na, Li Yulong, Guo Weiguo. Comparision of Mechnical Properties and their Temperature Dependence for Three Aluminum Alloys Under Dynamic Load [J]. ACTA AERONAUTICA ET ASTRONAUTICA SINICA. 2008, 29(4): 903-908.
[5] D. L. Holt, S. G. Babcock, S. J. Green, C. J. Maiden. The Strain-Rate Dependence of the Flow Stress in Some Aluminum Alloys. Transactions of the Asm: Transactions Quarterly. 1967, 60(2): 152~159
[6] U. S. Lindholm, R. L. Bessey, G. Y. Smith. Effect of Strain Rate on Yield Strength, Tensile Strength, and Elongation of Three Aluminum Alloys. J Mater 1971;6(1):119~33
[7] Ravi Shriram Yatnalkar. Experimental Investigation of Plastic Deformation of Ti-6Al-4V under Various Loading Conditions [D]. The Ohio State :The Ohio State University, 2010.
[8] P.K.C.Wood, C.A.Schley, S.Kenny, T.Dutton. Validating Performance of Automotive Materials at High Strain Rate for Improved Crash Design[C]. 9th International LS-DYNA Users Conference, Detroit, 2006.
[9] 白春玉,刘小川,周苏枫等,中应变率下材料动态拉伸关键参数测试方法[J],爆炸与冲击,2015,35(4):507-512.
Bai Chun-yu, Liu Xiao-chuan, Zhou Su-feng, etc,Material key parameters measurement method in the dynamic tensile testing at intermediate strain rate[J],EXPLOSION AND SHOCK WAVES,2015,35(4):507-512.
[10] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. In: Proceedings of the 7th International Symposium on Ballistics, The Hague ,Netherlands, 1983:541-547.
[11] Kang, W.J. Cho, S.S., Huh, H., Chung, D.T., 1999. Modified Johnson–Cook modelfor vehicle body crashworthiness simulation. Int. J. Vehicle Des. 21, 424–435.
[12] Cowper, G.R., Symonds, P.S., 1957. Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams. Brown University Division of Applied Mathematics Report, pp. 28.
[13] H. Huh, W. J. Kang, S. S. Han, A Tension Split Hopkinson Bar for Investigating the Dynamic Behavior of Sheet Metals [J], Exp. Mech, 2002, 42: 8-17.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}