基于随机共振理论对2FSK信号输出误码率的研究

王硕,王辅忠,尚金红,张光璐

振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 8-12.

PDF(549 KB)
PDF(549 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 8-12.
论文

基于随机共振理论对2FSK信号输出误码率的研究

  • 王硕,王辅忠,尚金红,张光璐
作者信息 +

Research on the 2FSK-signal output error-rate influenced by Nonlinear stochastic resonance system

  • Wang Shuo   Wang Fuzhong   Shang Jinhong   Zhang Guanglu
Author information +
文章历史 +

摘要

2FSK信号常用于进行中低速数据传输,但在强噪声背景下2FSK信号接收产生的误码率较高,基于以上问题提出了一种基于随机共振理论降低2FSK信号相干接收误码率的新方法。根据随机共振原理建立了非线性系统模型,进行数值实验研究,并与传统降低误码率的解调方法进行对比。实验数据显示:系统输入信噪比在-14.3dB~0dB区间时,输出的误码率会呈现大幅度的降低,其中系统输入信噪比在-6.5dB时,相比于传统模型误码率下降了14.3%,同时输出的频谱载波幅值是传统方法的2.07倍,系统输出信号的准确率得到大幅提升。

Abstract

2FSK signal is often used for low speed data transmission,but under the background of strong noise 2FSK signal receiving the error rate is higher. A novel method, based on the decreasing coherent reception error rate of binary phase shift keying signal with stochastic-resonance-theory, was introduced to get enhanced reception of 2FSK signal under noisy environment. The model was built under stochastic-resonance-theory and calculated utilizing MATLAB. Compared with the traditional demodulation, a great reduction of signal to noise ratio(SNR) was obtained from -14.3dB to 0dB. Furthermore, the error rate decreased by 14.3%. Meanwhile, the outputting carrier wave was 2.07 times the spectrum amplitude of that under previous method.

关键词

随机共振 / 误码率 / 2FSK信号 / 非线性双稳系统 / 信噪比

Key words

Stochastic Resonance / Bit Error Rate / 2FSK Signal / Nonlinea Bistable system / Signal to noise ratio

引用本文

导出引用
王硕,王辅忠,尚金红,张光璐. 基于随机共振理论对2FSK信号输出误码率的研究[J]. 振动与冲击, 2017, 36(19): 8-12
Wang Shuo Wang Fuzhong Shang Jinhong Zhang Guanglu. Research on the 2FSK-signal output error-rate influenced by Nonlinear stochastic resonance system[J]. Journal of Vibration and Shock, 2017, 36(19): 8-12

参考文献

[1]李宝国。探讨SDH光纤传输系统误码问题[J]. 工业B,2015 (9):158-158.
Lin Baoguo. Discusses the issue of SDH optical fiber transmission system error[J]. Industrial B, 2015 (9):158-158.
[2]李晶, 侯思祖。OFDM误码率性能分析与研究[J].微计算机信息, 2006, 22(3): 261–264.
LI Jing, Hou Sizu. Analysis and study of performance of OFDM ber[J]. Microcomputer Information, 2006, 22(3):261–264.
[3]Benzi R, Parisi G, Stuem A. A theory of stochastic resonance in climatic change[J]. [4]SIAM Journal on Applied Mathematics, 1983, 43(3): 565–578.
[4]余毅震,史俊霞,吴汉荣。功能性磁共振成像在高级认知功能研究中的应用[J].中国社会医学杂志, 2006, 3: 010.
Yu Yizhen, Shi Junxia, Wu Hanrong. Application of Functional Magnetic Resonance Imaging on the Research of Cognitive Function[J]. Chinese Journal Of Social Medicine,2006,3:010.
[5]刘磊,范铁生,王银斌,等.基于信号包络分析的并行微弱信号检测算法[J].计算机应用, 2012, 32(08): 2133-2136.
Li Lei, Fan Tiesheng, Wang Yinbin, et al.Parallel weak signal detection algorithm based on envelope analysis[J]. Journal of Computer Applications, 2012, 32(08): 2133-2136.
[6]人工神经网络原理及应用[M].科学出版社, 2006.
[7]毛炜,金荣洪,李家强,等。基于HHT变换的时频分析法及其在2FSK系统解调中的应用[J].电子与信息学报,2006,28(12):2318-2322.
Mao Wei, Jin Ronghong, Li Jia-qiang, et al.Time-Frequency Analysis Method Based on HHT and Its Application
in 2FSK Demodulation Systems[J]. Journal of Electronics & Information Technology, 2006,28(12):2318-2322.
[8]毕红博。基于混沌振子FSK微弱信号检测方法的研究[D].华北电力大学(河北),2008.
[9]Hari V N, Anand G V, Premkumar A B. Stochastic resonance phenomenon in an underdamped bistable system driven by weak asymmetric dichotomous noise[J].Signal Processing, 2012, 92: 1745–1757.
[10]Zou H L, Zheng L Q, Liu C J. Detecting parameters of high frequency signals with frequency modulation stochastic resonance[C]. Image and Signal Processing (CISP), 2013 6th International Congress on, 2013, 2: 1090–1095.

PDF(549 KB)

Accesses

Citation

Detail

段落导航
相关文章

/