钢筋与结构型合成纤维对混凝土抗冲击性能混杂效应的分析

李冬,丁一宁

振动与冲击 ›› 2017, Vol. 36 ›› Issue (2) : 123-128.

PDF(1235 KB)
PDF(1235 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (2) : 123-128.
论文

钢筋与结构型合成纤维对混凝土抗冲击性能混杂效应的分析

  • 李冬,丁一宁
作者信息 +

Hybrid effect of steel rebar and polypropylene fiber  on the impact resistance of concrete

  • LI Dong,DING Yining
Author information +
文章历史 +

摘要

为了研究钢筋与结构型合成纤维混杂后对混凝土抗冲击性能的影响,采用改进的自由落球冲击试验装置,对素混凝土、钢筋混凝土、结构型合成纤维增强混凝土以及钢筋-结构型合成纤维混杂增强的混凝土试件的抗冲击性能进行了试验研究,分析了钢筋、结构型合成纤维以及钢筋与结构型合成纤维混杂后对混凝土抗冲击性能的影响及其增强机理。同时,利用Weibull分布理论分析了试件初裂冲击次数和破坏冲击次数的分布规律。研究表明:结构型合成纤维可以提高混凝土抗冲击性能;对于提高混凝土的抗冲击性能,钢筋与结构型合成纤维表现出显著的正混杂效应; 两参数Weibull分布能较好的描述钢筋-结构型合成纤维混凝土抗冲击次数的分布特征。

Abstract

In order to investigate the hybrid effect of steel rebar and macro polypropylene fiber on the impact resistance of concrete,a series of drop-weight tests were carried out on different kinds of reinforced concrete specimens. The effects of steel rebar and macro polypropylene fiber on the concrete impact performance was analyzed,and the theory of Weibull distribution was adopted to analyse the number of blows till the first visible crack as well as till the failure of the specimen. The results indicate that macro polypropylene fiber can improve the impact resistance capacity and the combination of steel rebar and macro polypropylene fiber has a positive hybrid effect on impact behaviors. The goodness-of-fit tests indicate that the theory of Weibull distribution has a good fitness to describe the impact resistance of concrete.

关键词

自由落锤冲击试验 / 抗冲击性能 / 混杂效应 / Weibull分布

Key words

drop-weight test / impact resistance / hybrid effect / Weibull distribution

引用本文

导出引用
李冬,丁一宁. 钢筋与结构型合成纤维对混凝土抗冲击性能混杂效应的分析[J]. 振动与冲击, 2017, 36(2): 123-128
LI Dong,DING Yining. Hybrid effect of steel rebar and polypropylene fiber  on the impact resistance of concrete[J]. Journal of Vibration and Shock, 2017, 36(2): 123-128

参考文献

[1] 赵国藩, 彭少民, 黄承逵. 钢纤维混凝结构[M]. 北京:中国建筑工业出版社, 2000:303-307.
ZHAO Guo-fan, PENG Shao-min, HUANG Cheng-kui. Steel fiber reinforced concrete structures[M].Beijing: China Architecture and Building Press,2000:303-307.(in Chinese)
[2] CHEN Xiangyu, DING Yining, C.Azevedo. Combined effect of steel fibers and steel rebars on impact resistance of  high performance concrete[J]. Cent. South Univ.Technol, 2011, 18:1677-1684.
[3] 谷章昭, 倪梦象,樊钧,等. 合成纤维混凝土的性能及工程应用[J].建筑材料学报, 1999,  2(2):159-162.
GU Zhang-zhao, NI Meng-xiang, FAN Jun, et al. Properties of synthetic Fiber Reinforced Concrete and Its Application in Engineering[J]. Journal of Building Materials, 1999,  2(2):159-162.
[4] 陈润锋, 张国防,顾国芳. 我国合成纤维混凝土研究与应用现状[J].建筑材料学报,  2001, 4(2):167-173.
CHEN Ren-feng, ZHANG Guo-fang, GU Guo-fang. State of study and application of synthetic fibers reinforced concrete in China[J]. Journal of Building Materials, 2001, 4(2):167-173.
[5] Savas Erdem, Andrew Robert Dawson, Nicholas Howard Thom. Microstructure-linked strength properties and impact response of conventional and recycled concrete reinforced with steel and synthetic macro fibers[J]. Construction and Building Materials, 2011, 25: 4025-4036.
[6] 王伯昕,黄承逵.大直径合成纤维增强混凝土抗冲击性能的研究[J].建筑材料学报, 2006, 9(5):608-612.
WANG Bo-xin, HUANG Cheng-kui. Experimental study on impact resistance of large diameter synthetic fiber reinforced concrete[J]. Journal of Building Materials, 2006, 9(5):608-612.
[7] Eethar Thanon Dawood, Mahyuddin Ramli. Mechanical properties of high strength flowing concrete with hybrid fibers[J]. Construction and Building Materials, 2012,28:193-200.
[8] Zongcai Deng, Jianhui Li. Mechanical behaviors of concrete combined with steel and synthetic macro-fibers[J]. International Journal of Physical Sciences, 2006,1: 57-66.
[9] 李建辉, 张科强, 邓宗才.粗合成纤维混凝土抗弯冲击强度的分布规律[J].建筑科学与工程学报,2007,24(4):54-59.
LI Jian-hui, ZHANG Ke-qiang, DENG Zong-cai. Distribution regularity of flexural impace resistance of synthetic macro-fiber reinforced concrete[J]. Journal of Architecture and Civil Engineering,2007,24(4):54-59.
[10] ACI Committee544. Fiber reinforced concrete (ACI544.1R-96). May 1997.
[11] 王璞,黄真,周岱,等.碳纤维混杂纤维混凝土抗冲击性能研究[J]. 振动与冲击,2012, 31(12):14-18.
WANG Pu, Huang Zhen, Zhou Dai, et al. Impact mechanical properties of concrete reinforced with hybrid carbon fibers[J].Journal of Vibration and Shock, 2012, 31(12):14-18.
[12] Y. Ding, Y. Zhang, A. Thomas. The investigation on strength and flexural toughness of fibre cocktail reinforced self-compacting high performance concrete[J]. Construction and Building Materials, 2009, 23: 448-452.
[13]叶列平. 混凝土结构(第2版 上册)[M]. 北京:清华大学出版社, 2006:110-114.
Ye Lie-ping. Concrete structures(second edition volume 1)[M]. Beijing:Tsinghua University Press,2006:110-114.
[14] Yining Ding, Xiliang Ning, Yulin Zhang, et al. Fibers for enhancing of the bond capacity between GFRP rebar and concrete[J]. Construction and Building Materials, 2014, 51: 303-312.
[15] C.X. Qian, P. Stroeven. Development of hybrid polypropylene-steel fibre-reinforced concrete[J]. Cement and Concrete Research, 2000,30:63-69.
[16] Ding Yining, You Zhiguo , Jalali Said. The composite Effect of Steel Fibres and Stirrups on Shear Behaviour of Beams using Self-Consolidating Concrete[J]. Engineering Structures, 2011, 33:107-117.
[17] Mahmoud Nili, V. Afroughsabet. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete[J]. Construction and Building Materials,2010,24:927-933.
[18] N. Banthia, P. Gupta, C. Yan. Impact resistance of fiber reinforced wet-mix shotcrete part 2: plate tests[J]. Materials and Structures, 1999, 32(11): 643-650.
[19] A. Alavi, M. Hedayatian, M. Nili, et al. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete[J]. International Journal of Impact Engineering,2012,46:62-73.
[20] Savas Erdem, Andrew Robert, Nicholas Howard Thom. Microstructure-linked strength properties and impact response of conventional and recycled concrete reinforced with steel and synthetic macro fibres[J]. Construction and Building Materials, 2011, 25: 4025-4036.
[21] Kim Hung Mo, Soon Poh Yap, U.Johnson Alengaram, et al. Impact resistance of hybrid fibre-reinforced oil palm shell concrete[J]. Construction and Building Materials,2014,50:499-507.
[22] LI Hui, ZHANG Mao-hua, OU Jin-ping. Flexural fatigue performance of concrete containing nano-particles for pavement[J]. International Journal of Fatigue, 2007, 29: 1292-1301.
[23] S.Goel, S.P.Singh, P.Singh. Fatigue analysis of plain and fiber-reinforced self-consolidating concrete[J]. ACI Materials Journal, 2012, 109:573-582.
[24] Singh, S.P., Kaushik,etal. Flexural fatigue life distributions and failure probability of steel fibrous concrete[J]. ACI Materials Journal, 2000,97:658-667.
[25] Mohammadi, Y.,Kaushik, et al. Flexural fatigue-life distributions of plain and fibrous concrete at various stress levels[J]. Journal of Materials in Civil Engineering, ASCE, 2005,17:650-658.
[26] P.S. Song, J.C. Wu, S.Hwang, et al. Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete[J]. Cement and Concrete Research, 2005, 35:393-399.
[27] 王立成,王海涛,刘汉勇.钢纤维轻骨料混凝土抗冲击性能试验研究与统计分析[J].大连理工大学学报, 2010, 50(4)557-563.
WANG Li-cheng, Wang Hai-tao, Liu Han-yong. Experimental study and statistical evaluation for impact resistance of steel fiber reinforced light weight aggregate concrete [J]. Journal of Dalian University of Technology, 2010,50(4)557-563.
 

PDF(1235 KB)

Accesses

Citation

Detail

段落导航
相关文章

/