粗糙结合面法向接触的能量耗散与阻尼特性研究

王庆朋,张 力,唐志刚,罗求顺

振动与冲击 ›› 2017, Vol. 36 ›› Issue (2) : 129-133.

PDF(1119 KB)
PDF(1119 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (2) : 129-133.
论文

粗糙结合面法向接触的能量耗散与阻尼特性研究

  • 王庆朋,张 力,唐志刚,罗求顺
作者信息 +

Energy dissipation and damping characteristics analysis on the normal contacts of rough joint surfaces

  • WANG Qingpeng,ZHANG Li,TANG Zhigang,LUO Qiushun#br# 
Author information +
文章历史 +

摘要

为了能够预测粗糙结合面法向接触的能量耗散和阻尼的变化规律,在Hertz和Abbott-Firestone经典接触模型的基础上,提出了一种加载—卸载混合弹塑性接触模型。首先,研究单个微凸体在完全弹性和塑性接触状态下的受力特性,推导出混合弹塑性状态下接触面积和力的数学表达式,进而研究能量变化规律和接触阻尼特性。然后,通过文献中的实验数据,并且和完全弹性、塑性状态下的接触模型进行对比,验证了本文模型的有效性。在此基础上,分析能量耗散和法向接触阻尼与法向变形量、硬度以及硬度指数的关系。结果表明,结合面能量耗散随着法向变形量的增加而变大,而法向接触阻尼随之减小;在法向变形量一定时,接触阻尼随着材料硬度的增加而变大,而硬度指数的影响很小。

Abstract

Based on the Hertz and Abbott-Firestone contact models,a mixed elastic-plastic model for two rough surfaces subjected to loading and unloading was developed to predict their energy dissipation and normal contact damping. The math models of contact area and force in the mixed elastic-plastic contact mode were derived using the theory of single asperity deformed elastically and plastically,and then the energy variation and contact damping characteristics were further investigated. Subsequently,the proposed model was validated through experimental results reported in the literature,and compared with the purely elastic and purely plastic contact models. On this basis,the energy dissipation and normal contact damping were studied under the conditions of different normal displacement,hardness of material,and hardness exponent. The results reveal that the energy dissipation increases with the increase of normal displacement,but the normal contact damping decreases. The normal contact damping increases as a result of the increase of hardness of material,and it changes slightly along with the change of hardness exponent at given normal displacement.

关键词

粗糙结合面 / 混合弹塑性 / 能量耗散 / 法向接触阻尼

Key words

rough joint surfaces / mixed elastic-plastic model / energy dissipation / normal contact damping

引用本文

导出引用
王庆朋,张 力,唐志刚,罗求顺. 粗糙结合面法向接触的能量耗散与阻尼特性研究[J]. 振动与冲击, 2017, 36(2): 129-133
WANG Qingpeng,ZHANG Li,TANG Zhigang,LUO Qiushun. Energy dissipation and damping characteristics analysis on the normal contacts of rough joint surfaces[J]. Journal of Vibration and Shock, 2017, 36(2): 129-133

参考文献

[1] Fu Weiping, Huang Yumei, Zhang Xueliang, et al. Experimental investigation of dynamic normal characteristics of machined joint surfaces [J]. ASME Journal of Vibration and Acoustics, 2000, 122(4): 93-398.
[2] Konowalski K. Experimental research and molding of normal contact stiffness and contact damping of machined joint surfaces [J]. Advances in Manufacturing Science and Technology, 2009, 33(3): 53-68.
[3] 赵宏林, 丁庆新, 曾鸣, 等. 机床结合部特性的理论解析及应用[J]. 机械工程学报, 2008, 44(12): 208-214.
Zhao Hong-lin, Ding Qing-xin, Zeng Ming, et al. Theoretic analysis on and application of behaviors of machine tool joints [J]. Journal of Mechanical Engineering, 2008, 44(12): 208-214.
[4] 张学良, 丁红钦, 兰国生, 等. 基于分形理论的结合面法向接触阻尼与损耗因子模型[J]. 农业机械学报, 2013, 44(6): 287-294.
Zhang Xue-liang, Ding Hong-qin, Lan Guo-sheng, et al. Normal contact damping and dissipation factor model of joint interfaces based on fractal theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 287-294.
[5] 田红亮, 郑金华, 赵春华, 等. 界面损耗因子与法向阻尼的计算方法[J]. 上海交通大学学报, 2015, 49(5): 687-694.
Tian Hong-liang, Zheng Jin-hua, Zhao Chun-hua, et al. Calculating Method of Surface Dissipation Factor and Normal Damping [J]. Journal of Shanghai Jiaotong University, 2015, 49(5): 687-694.
[6] 邵毅敏, 肖会芳. 动力系统非连续单一叠加结构界面变形与能力损耗特性[J]. 振动与冲击, 2011, 30(4): 217-222.
Shao Yi-min, Xiao Hui-fang. Deformation and energy loss of single layered and discontinuous structural interface of a power system [J]. Journal of Shock and Vibration, 2011, 30(4): 217-222.
[7] 肖会芳, 邵毅敏, 周晓君. 非连续粗糙多界面接触变形和能量损耗特性研究[J]. 振动与冲击, 2012, 31(6): 83-89.
Xiao Hui-fang, Shao Yi-min, Zhou Xiao-jun. Contact deformation and energy dissipation characteristics of a discontinuous rough multi-interface [J]. Journal of Shock and Vibration, 2012, 31(6): 83-89.
[8] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces [J]. Proceedings of the Royal Society of London, 1966, 295: 300-319.
[9] Hertz H. On the contact of elastic solids [J]. J. Reine Andgew. Math, 1882, 92: 156–171.
[10] Tatara Y. Extensive theory of force-approach relations of elastic spheres in compression and in impact [J]. ASME Journal of Engineering Materials and Technology, 1989, 111: 163–168.
[11] Tabor D. The hardness of metals [M]. Oxford: Oxford University Press, 1951.
[12] Abbott E J, Firestone F A. Specifying surface quality: a method based on accurate measurement and comparison [J]. Mechanical Engineering, 1933, 55: 569–572.
[13] Strong W J. Contact Problems for Elasto-Plastic Impact in Multi-Body Systems [C]//BROGLIATO B. Impacts in Mechanical Systems: Analysis and Modeling. Berlin:Springer, 2000: 189-234.
[14] Brake M R. An analytical elastic-perfectly plastic contact model [J]. International Journal of Solids and Structures, 2012, 49(22): 3129-3141.
[15] Brake M R. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts [J]. International Journal of Solids and Structures, 2015, 62(1): 104-123.
[16] 杨楠,陈大融, 孔宪梅. 多粗糙峰弹塑性接触的有限元分析[J].摩擦学学报, 2000, 20(3): 202-206.
Yang Nan, Chen Da-rong, Kong Xian-mei. Elastic-plastic finite element analysis of multi-asperity contacts [J]. Tribology, 2000, 20(3): 202-206.
[17] Jamari J, Schipper D J. Experimental investigation of fully plastic contact of a sphere against a hard flat [J]. ASME Journal of Tribology, 2006, 128: 230–235.

PDF(1119 KB)

423

Accesses

0

Citation

Detail

段落导航
相关文章

/