利用落锤冲击装置完成了不同压实系数下内填砂卵石薄壁方钢管柱侧向冲击试验,试验中记录了冲击力时程曲线,并获得了试件的破坏形态以及残余变形量。基于剩余承载力损伤评估准则,定义损伤度来判定冲击荷载下内填砂卵石薄壁方钢管柱损伤破坏程度,分析压实系数与柱损伤度的关系。试验结果表明:试件在侧向冲击荷载作用下,主要以局部破坏为主,并伴有一定量的整体弯曲变形;除了试件塑性变形中产生的塑性铰能消耗部分冲击能量外,内填砂卵石也能耗散一部分冲击能量,且压实越紧密,能量消耗越多,该组合柱表现出了较好的抗冲击性能;在一定压实系数范围内,损伤度随着压实系数增大出现先增大后减小的趋势,且砂卵石离散程度越小,损伤度的变化速率就越大。
Abstract
Square thin-walled steel tube columns filled with sandy pebble were tested under different compaction factors and lateral impacts by a drop-hammer-tester. In the experiment,time-history curves were recorded,together with the damage form and residual deformation of specimens. Based on the damage assessment criteria of residual capacity,the index of damage degree was introduced and defined to evaluate the damage of square thin-walled steel tube columns under different impact loads. Moreover,the relationship between the compacting factor and damage degree was analyzed. The results show that the damage of specimens is mainly owing to the local failure with a certain amount of overall bending under lateral impact. The impact energy is dissipated not only by the plastic hinge energy consumption due to plastic deformation,but also the filled sandy pebble,and the more tightly compacted,the more energy consumed. Thus,the columns filled with sandy pebble show a favorable anti-collision performance. Within a certain range of compaction factor,the damage degree first increases then decreases with the increase of compaction factor,and its changing rate is greater when the discrete degree of sandy pebble is smaller.
关键词
压实系数 /
砂卵石 /
薄壁方钢管柱 /
冲击荷载 /
损伤度
{{custom_keyword}} /
Key words
compaction factor /
sandy pebble /
square thin-walled steel tube column /
impact load /
damage degree
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈骥.钢结构稳定理论与设计(第五版)[M].北京:科学出版社,2011.
CHEN Ji. Stability of steel structures theory and design (5nd Edition)[M].Beijing: Science Press, 2011.
[2] 任够平,李珠,王蕊.低速侧向冲击下钢管混凝土柱挠度研究[J].工程力学, 2008,25(5):170-175.
REN Gou-ping, LI Zhu, WANG Rui. The deflection of concrete filled steel tubular column under lateral impact at low speed [J].Engineering Mechanics, 2008,25(5):170-175.
[3] 王蕊,李珠,任够平等.钢管混凝土梁在侧向冲击荷载作用下动力响应的试验研究和数值模拟[J].土木工程学报,2007,40(10):34-40.
WANG Rui, LI Zhu, REN Gou-ping, et al. Experimental study and numerical simulation of the dynamic response of concrete filled steel tubes under lateral impact load [J].China Civil Engineering Journal, 2007,40(10):34-40.
[4] 邓勇军,姚勇,刘欢等.薄壁方钢管-砂卵石组合短柱轴压力学性能研究[J].西南科技大学学报(自然科学版),2014,29(3):49-53.
DENG Yong-jun, Yao Yong, Liu Huan, et al. Study of the mechanical properties of thin-walled square steel tube sandy pebble composite short columns to axial loads [J]. Journal of Southwest University of Science and Technology, 2014,29(3):49-53.
[5] 刘欢,姚勇,褚云朋等.内填砂卵石薄壁方钢管柱轴压性能试验研究[J].工业建筑,2013,43(486):36-44.
LIU Huan, Yao Yong, Chu Yun-peng, et al. Experimental study of performance of axially compressed sandy pebble filled thin-walled square steel tubular columns [J].Industrial Construction, 2013,43(486):36-44.
[6] 张望喜,单建华,陈荣等.冲击荷载下钢管混凝土柱模型力学性能试验研究[J].振动与冲击, 2006,25(5):96-101.
ZHANG Wang-xi, SHAN Jian-hua, CHEN Rong, et al. Experimental research on mechanical behavior of concrete filled steel tubes model under impact load[J]. Journal of Vibration and Shock, 2006, 25(5): 96-101.
[7] 程小卫,李易,陆新征等.撞击荷载下钢筋混凝土柱动力响应的数值研究[J].工程力学,2015, 32(2):53-63.
CHENG Xiao-wei, LI Yi, LU Xin-zheng,et al. Numerical investigation on dynamic response of reinforced concrete columns subjected to impact loading[J]. Engineering Mechanics, 2015, 32(2): 53-63.
[8] 崔娟玲,郭昭胜,王蕊等.热轧H型钢柱侧向冲击试验研究[J].振动与冲击,2014, 33(18):133-139.
CUI Juan-ling, Guo Zhao-sheng, Wang Rui, et al. Tests for behavior of a hot rolled H-shaped steel column under lateral impact [J].Journal of Vibration and Shock, 2014, 33(18):133-139.
[9] N.K.Gupta, P.Ray. Simply supported empty and filled thin-square-tubular beams under central wedge loading. Thin-Wall Structures,1999,34(2): 261-278.
[10] Remennikov A M, Kong S Y, Uy B. Response of foam-and concrete-filled square steel tubes under low-velocity impact loading. Journal of Performance of Constructed Facilities,2011, 25(5):373-381.
[11] 杨晓光.火灾后钢筋混凝土结构的受损鉴定与修复加固[D].天津:天津大学,2006.
YANG Xiao-guang. The damage identifying and repair reinforcement of the reinforced concrete after fire [D].Tianjin: Tianjin University,2006.
[12] 王蕊,郭昭胜,裴畅.局部屈曲变形损伤对H型钢柱竖向剩余承载力影响的试验研究[J].建筑结构,2014,44(21):17-22.
WANG Rui, GUO Zhao-sheng, Pei Chang. Experimental study on vertical residual bearing capacity of H-shaped steel column with local buckling deformation[J]. Building Structure, 2014,44(21):17-22.
[13] 张猛.受损伤圆钢管轴压杆件稳定极限承载力分析研究[D].郑州:郑州大学,2003.
ZHANG Meng. Research on buckling capability of the damaged round steel tube members under axial pressure[D].Zhengzhou: Zhengzhou University, 2003.
[14] 钮鹏,金春福. 几何缺陷影响下的CFRP-方钢管极限承载力解析解[J].工程力学,2015,32: 322-326.
NIU Peng, JIN Chun-fu. Analytical solutions on ultimate bearing capacity of a square CFRP-steel tube member with initial imperfection[J]. Engineering Mechanics,2015,32:322-326.
[15] 裴畅.侧向撞击下H型钢构件动力响应及其剩余承载力的实验研究和仿真分析[D].太原:太原理工大学,2013.
PEI Chang. Experimental studies and simulation analysis on dynamic response and residual strength of H-shaped steel member under lateral impact[D].Taiyuan: Taiyuan University of Technology, 2013.
[16] 白燕.荷载参数对H型钢柱撞击后剩余轴压承载能力影响的分析[D].太原:太原理工大学,2015.
BAI Yan. Residual ability analysis of loading parameters on H-type Columns under axial load [D]. Taiyuan: Taiyuan University of Technology, 2015.
[17] 田力,朱聪.碰撞冲击荷载作用下钢筋混凝土柱的损伤评估及防护技术[J].工程力学,2013,30(9):144-150.
TIAN Li, Zhu Cong. Damage evaluation and protection technique of RC columns under impulsive load [J].Engineering Mechanics, 2013,30(9):144-150.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}