声学边界元拟奇异积分计算的自适应方法

缪宇跃1,2 李天匀1,2,3 朱翔1,2 张冠军1,2 郭文杰1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (2) : 23-31.

PDF(1790 KB)
PDF(1790 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (2) : 23-31.
论文

声学边界元拟奇异积分计算的自适应方法

  • 缪宇跃1,2  李天匀1,2,3  朱翔1,2  张冠军1,2 郭文杰1,2
作者信息 +

Adaptive method for calculating nearly singular integrals in acoustic boundary elements

  • MIAO Yuyue1,2,LI Tianyun1,2,3,ZHU Xiang1,2,ZHANG Guanjun1,2,GUO Wenjie1,2
Author information +
文章历史 +

摘要

提出一种自适应方法计算声学边界元中的拟奇异积分,通过单元分级细分将总积分转移到子单元上以消除拟奇异性。在此方法基础上深入研究拟奇异性,进一步提出接近度的概念,其中临界接近度可作为拟奇异积分计算的理论依据,并可用于预估拟奇异性是否存在。此方法的积分精度可调控,且不受场点位置限制,相比于已有方法更加灵活高效。数值分析表明拟奇异性强弱由场点与单元的相对位置决定,单元上远离场点的区域拟奇异性很弱,无需处理。研究结果为处理边界元法中的拟奇异性问题提供了新的选择和参考。

Abstract

An adaptive method was presented to calculate nearly singular integrals in acoustic boundary elements. The element was subdivided into subelements hierarchically so as to remove the near singularity by transforming the integral over the initial element to Gauss integrals over subelements. Based on this method,the near singularity was thoroughly studied and the concept of proximity was described. The critical proximity can be used as the criterion for calculating nearly singular integrals and to predict the existence of near singularity. Compared with previous methods,the adaptive method is more flexible and efficient. The integral precision can be adjusted and is not restricted by the positions of near-field points. It is found that the positional relationships between near-field points and the element have important effect on nearly singular integrals. The work provides more understanding and choice to the problem of near singularity in acoustic boundary elements.

关键词

边界元 / 拟奇异性 / 自适应 / 接近度

Key words

boundary elements;  / nearly singularity;  / adaptivity;  / proximity

引用本文

导出引用
缪宇跃1,2 李天匀1,2,3 朱翔1,2 张冠军1,2 郭文杰1,2. 声学边界元拟奇异积分计算的自适应方法[J]. 振动与冲击, 2017, 36(2): 23-31
MIAO Yuyue1,2,LI Tianyun1,2,3,ZHU Xiang1,2,ZHANG Guanjun1,2,GUO Wenjie1,2. Adaptive method for calculating nearly singular integrals in acoustic boundary elements[J]. Journal of Vibration and Shock, 2017, 36(2): 23-31

参考文献

[1] 李善德, 黄其柏, 李天匀. 新的对角形式快速多极边界元法求解声学 Helmholtz 方程[J]. 物理学报, 2012, 61(6): 64301-  064301.
   LI Shan-de, HUANG Qi-bai, LI Tian-yun. A new diagonal form   fast multipole boundary element method for solving acoustic  Helmholtz equation[J]. Acta Physica Sinica, 2012, 61(6): 64301-064301.
[2] 白杨, 汪鸿振. 声学-结构设计灵敏度分析[J]. 振动与冲击, 2003, 22(3).
   BAI Yang, WANG Hong-zhen. Acoustic-structural design sensitivity analysis[J]. Journal of Vibration and Shock, 2003,  22(3).
[3] 杨迎春, 周其斗. 运动介质中奇异边界元积分式的精确求解 [J]. 振动与冲击, 2011, 30(3): 242-245.
   YANG Ying-chun, ZHOU Qi-dou. Accurate calculation of weak  singular integrals in boundary element method in moving flows [J]. Journal of Vibration and Shock, 2011, 30(3): 242-245.
[4] 张耀明, 孙翠莲, 谷岩. 边界积分方程中近奇异积分计算的 一种变量替换法[J]. 力学学报, 2008, 40(2): 207-214.
   ZHANG Yao-ming, SUN Cui-lian, GU Yan. The evaluation of  nearly singular integrals in the boundary integral equations with  variable transformation[J]. Chinese Journal of Theoretical and  Applied Mechanics, 2008, 40(2): 207-214.
[5] 牛忠荣, 张晨利, 王秀喜. 边界元法分析狭长体结构[J]. 计算力学学报, 2003, 20(4): 391-396.
   NIU Zhong-rong, ZHANG Chen-li, WANG Xiu-xi. Boundary  element analysis of the thin-wall structures[J]. Chinese Journal of Computational Mechanics, 2003, 20(4): 391-396.
[6] Tanaka M, Sladek V, Sladek J. Regularization techniques applied  to boundary element methods[J]. Applied Mechanics Reviews, 1994, 47(10): 457-499.
[7] Zhang Y, Gu Y, Chen J. Stress analysis for multilayered coating  systems using semi-analytical BEM with geometric non-linearities[J]. Computational Mechanics, 2011, 47(5): 493-
   504.
[8] Niu Z, Cheng C, Zhou H, et al. Analytic formulations for  calculating nearly singular integrals in two-dimensional BEM[J].  Engineering analysis with boundary elements, 2007, 31(12): 949  -964.
[9] Zhou H, Niu Z, Cheng C, et al. Analytical integral algorithm in the BEM for orthotropic potential problems of thin bodies[J].  Engineering Analysis with Boundary Elements, 2007, 31(9):739–748.
[10] Zhou H, Niu Z, Cheng C, et al. Analytical integral algorithm  applied to boundary layer effect and thin body effect in BEM for an isotropicpotential problems[J]. Computers & Structures, 2008, 86(1516):1656–1671.
[11] Niu Z, Zhou H. The natural boundary integral equation in   potential problems and regularization of the hypersingular  integral[J]. Computers & Structures, 2004, 82(2):315-323(9).
[12] Davies T G, Gao X. Three-dimensional elasto-plastic analysis  via the boundary element method[J]. Computers and Geotechnics,2006, 33(3):145–154.
[13] Kita E, Kamiya N. Error estimation and adaptive mesh refinement in boundary element method, an overview[J]. Engineering  Analysis with Boundary Elements, 2001, 25(7):479-495(17).
[14] WEI Y, WANG Y, CHANG S, et al. Numerical prediction of propeller excited acoustic response of submarine structure based on CFD, FEM and BEM[J]. Journal of Hydrodynamics, Ser. B,  2012, 24(2): 207-216.
[15] Croaker P, Kessissoglou N, Marburg S. Strongly singular and  hypersingular integrals for aeroacoustic incident fields[J].  International Journal for Numerical Methods in Fluids, 2015,  77(5): 274-318.
[16] Dong Y, Zhang J, Xie G, et al. A general algorithm for the  numerical evaluation of domain integrals in 3D boundary   element method for transient heat conduction[J]. Engineering 
Analysis with Boundary Elements, 2015, 51: 30-36.
[17] Davies T G, Gao X. Three-dimensional elasto-plastic analysis  via the boundary element method[J]. Computers and Geotechnics, 2006, 33(3):145–154.
[18] Gao X W, Yang K, Wang J. An adaptive element subdivision  technique for evaluation of various 2D singular boundary 
integrals[J]. Engineering analysis with boundary elements,  2008, 32(8): 692-696.
[19] Li Y, Ye J H. The interaction between membrane structure and wind based on the discontinuous boundary element[J]. Science China Technological Sciences, 2010, 53(2): 486-501.
[20] 王静, 高效伟. 基于单元子分法的结构多尺度边界单元[J].计算力学学报, 2010, 27(2): 258-263.
WANG Jing, GAO Xiao-wei. Structural multi-scale boundary  element method based on element subdivision technique[J]. Chinese Journal of Computational Mechanics, 2010, 27(2):
258-263.
[21] Qu S, Chen H, Li S. Adaptive Integration Method Based on  Sub-Division Technique for Nearly Singular Integrals in Near-Field Acoustics Boundary Element Analysis[J]. Journalof Low Frequency Noise, Vibration and Active Control,  2014,33(1): 27-46.
[22] Davies X G & T G. Adaptive integration in elasto-plastic  boundary element analysis[J]. Journal of the Chinese Institute of  Engineers, 2000, 23(3):349-356.
[23] Zhang J, Tanaka M, Matsumoto T. Meshless analysis of potential problems in three dimensions with the hybrid boundary node method[J]. International Journal for Numerical
Methods in Engineering, 2004, 59(9): 1147-1166.
[24] Zhang J, Qin X, Han X, et al. A boundary face method for potential problems in three dimensions[J]. International journal  for numerical methods in engineering, 2009, 80(3): 320-337.
[25] Kang S C, Ih J G. On the accuracy of nearfield pressure predicted by the acoustic boundary element method[J]. Journal  of Sound and Vibration, 2000, 233(2): 353-358.

 

PDF(1790 KB)

Accesses

Citation

Detail

段落导航
相关文章

/