In the process of paper forming,serious vibration is usually existing in a single-sided corrugating machine. In order to analyze the causes of vibration and thus reduce it,a dynamic model was set up to study the key mechanism of the single-sided corrugating machine—the pressure roller mechanism. The simulation results show that it is the insufficient stiffness of the push bar which causes the nonlinearity of the pressure roller mechanism. An additional experiment was carried out to verify the validity of the dynamic model,from which the main reason resulting in the vibration of the machine was revealed. It turns out that the single-sided corrugating machine has two resonance frequencies when it works within the normal rotating speed range. Finally,an improvement solution was proposed to control and reduce the vibration by increasing the stiffness of the push bar. Simulation comparisons show that the forced displacement of the mechanism is reduced by 35.2 percent using the improvement solution,which provides a theoretical reference for reducing the vibrations of corrugating machines.
SHANG Wen,DU Qungui.
Dynamic analysis on the pressure roller mechanism of the single-sided corrugating machine[J]. Journal of Vibration and Shock, 2017, 36(2): 77-82
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘丕群. 瓦楞纸板生产线运动学和动力学仿真[D]. 广州: 华南理工大学, 2013.
LIU Pi-qun. The Simulation on Kinematics and Dynamics of Corrugated Board Production Line[D]. Guangzhou: South China University of Technology,2013.
[2] 柯晖,周世棠等. 高速瓦楞辊机构的中心距方程及其运动分析[J]. 湖北工学院学报. 2001(1): 48-51.
KE Hui,ZHOU Shi-tang,etc. Synthesis of the Center's Distance of High-speed Corrugating Roller[J], Journal of Hubei Polytechnic University. 2001,16(1):49-51
[3] 熊桂超,杜群贵. 单面瓦楞机的瓦楞辊机构中心距变动方程[J]. 科学技术与工程. 2011(22): 5290-5294.
XIONG Gui-chao,DU Qun-gui. The equation of the changing center of single-sided corrugating machine corrugating roller. Science Technology and Engineering. 2011,11(22):5290-05.
[4] 刘延柱. 振动力学[M]. 北京: 高等教育出版社, 1998.
LIU Yan-zhu. Vibration Mechanics [M]. Bei Jing: Higher Education Press, 1998.
[5] 王立华,李润方,林腾蛟等. 齿轮系统时变刚度和间隙非线性振动特性研究[J]. 中国机械工程. 2003,14(13): 1143-1146.
WANG Li-hua,LI Run-fang,LIN Teng-jiao,etc. Research on Nonlinear Vibration Characterisitcs due to Time-varing Mesh Stiffness and Gear Backlash in Gear System[J]. China Mechanical Engineering. 2003, 14(13): 1143-1146.
[6] 刘北辰. 多自由度非线性动力方程求解的新方法[J]. 昆明工学院学报. 1994,19(6): 64-72.
LIU Bei-chen. A New Methods for the Solution to Multivariate Nonlinear Dynamic Equations[J]. Journal of Kunming Institute of Technology. 1994,19(6): 64-72.
[7] 刘国华,李亮玉,李培明等. 含间隙和时变刚度的齿轮系统非线性动力学模型的研究[J]. 机械设计. 2008,25(5): 27-30.
LIU Guo-hua,LI Liang-yu,LI Pei-ming, etc. Study on Nonlinear Dynamics Model of the Gear System with Clearance and Time Varying Stiffness [J]. Journal of Machine Design. 2008,25(5): 27-30.
[8] 卢绪祥,刘正强,黄树红等. 含间隙碰撞振动系统的非线性振动特性[J]. 动力工程学报. 2012,32(5): 388-393.
LU Xiu-xiang,LIU Zheng-qiang,HUANG Shu-hong,etc. Nonlinear Vibration Characteristics of a Vibro-impact System with Clearance [J]. Journal of Chinese Society of Power Engineering. 2012,32(5): 388-393.
[9] 王常峰,陈兴冲,朱春林等. 考虑支座及限位装置非线性的接触摩擦单元模型[J]. 工程力学. 2013,30(8): 186-192.
WANG Chang-feng,CHEN Xing-chong,ZHU Chun-lin,etc. The Contact-And-Friction Element Considering Nonlinear Performance Of Movable Supports And Restrainers [J]. Engineering Mechanics. 2013,30(8): 186-192.
[10] 丁康,潘成灏,李巍华. ZFFT与Chirp-Z变换细化选带的频谱分析对比[J]. 振动与冲击. 2006,25(6): 9-12.
DING Kang,PAN Cheng-hao,LI Wei-hua. Spectrum Analysis Comparison Between ZFFT And Chirp-Z Transform [J]. Journal of Vibration and Shock. 2006,25(6): 9-12.
[11] 周福昌,陈进,何俊等. 循环平稳信号处理在机械设备故障诊断中的应用综述[J]. 振动与冲击. 2006,25(5): 148-152.
ZHOU Fu-chang,CHEN Jin,HE Jun,etc. Survey Of The Application Of Cyclostationary Signal Processing In Machinery Fault Diagnosis [J]. Journal of Vibration and Shock. 2006,25(5): 148-152.
[12] 丁康,孔正国,李巍华. 振动调频信号的循环平稳解调原理与实现方法[J]. 振动与冲击. 2006, 25(1): 5-9.
DING Kang,KONG Zheng-guo,LI Wei-hua. Principle And Method Of Cyclostationary Analysis For Demodulating Frequency Modulated Vibration Signal [J]. Journal of Vibration and Shock. 2006, 25(1): 5-9.