含新型滑移支座的并联隔震建筑实时混合模拟试验研究

黄亮,徐伟杰,郭彤

振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 151-157.

PDF(2926 KB)
PDF(2926 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 151-157.
论文

含新型滑移支座的并联隔震建筑实时混合模拟试验研究

  • 黄亮,徐伟杰,郭彤
作者信息 +

Real-time Hybrid Simulation of Parallel Isolated Building with Novel Sliding Isolators

  • Huang Liang   Xu Weijie  Guo Tong
Author information +
文章历史 +

摘要

滑移隔震支座是性能稳定、构造简单的隔震装置,本文介绍了一种摩擦界面涂有二硫化钼的新型滑移支座。为了解滑移支座的摩擦性能及含此支座的并联隔震建筑的隔震效果,对支座进行了拟静力试验、实时混合模拟试验和数值模拟。拟静力试验表明滑移支座的摩擦系数与水平加载频率及压强存在相关性。以滑移支座为试验子结构、铅芯橡胶支座及上部结构为数值子结构,进行了实时混合模拟试验,研究了滑移支座在地震作用下的响应,并通过与有限元模拟结果的对比,评估了并联支座的隔震效果。结果表明,采用新型滑移支座和铅芯橡胶支座的并联隔震结构具有良好的隔震效果。

Abstract

Sliding isolator is an isolation device of steady performance and simple structural configuration, this paper introduced a novel sliding bearing with friction interface coated with molybdenum disulfide. To study the friction character of the sliding isolator and the isolation effect of parallel isolated building with sliding isolators, quasi-static test, real time hybrid simulation (RTHS) and numerical simulation were applied in this research. The results of quasi-static test showed the friction coefficient of the sliding bearing correlated with horizontal loading frequency and pressure. RTHS, with the sliding bearing as the experimental substructure, the lead rubber bearings and the upper structure as the numerical substructure, investigated the responses of the sliding bearing under earthquakes. Then the RTHS results were compared with finite element analysis results to evaluate isolation effect. It is concluded that the parallel isolated structure with sliding isolators and lead rubber bearings has desirable isolation effect.

关键词

实时混合模拟 / 滑移支座 / 隔震支座 / 摩擦 / 子结构

Key words

Real-time hybrid simulation / Sliding bearing / Isolator / Friction / Substructure

引用本文

导出引用
黄亮,徐伟杰,郭彤. 含新型滑移支座的并联隔震建筑实时混合模拟试验研究[J]. 振动与冲击, 2017, 36(20): 151-157
Huang Liang Xu Weijie Guo Tong. Real-time Hybrid Simulation of Parallel Isolated Building with Novel Sliding Isolators[J]. Journal of Vibration and Shock, 2017, 36(20): 151-157

参考文献

[1] 周福霖. 工程结构减震控制[M]. 地震出版社, 1997.
 Zhou Fulin. Vibration-Reduction Control of Engineering Structures[M]. Earthquake Publishing House.1997.
[2] Nakashima M, Kato H and Takaoka E. Development of real-time pseudodynamic testing [J]. Earthquake Engineering and Structural Dynamics, 1992,21 (1):79-92.
[3] Dion C, Bouaanani N, Tremblay R, Lamarche C. Real-Time Dynamic Substructuring Testing of a Bridge Equipped with Friction-Based Seismic Isolators[J]. Journal of Bridge Engineering. 2012;17(1):4-14.
[4] Chae Y, Ricles JM, Sause R. Large‐scale real‐time hybrid simulation of a three‐story steel frame building with magneto‐rheological dampers[J]. Earthquake Engineering & Structural Dynamics. 2014;43(13):1915-33.
[5] Spencer BF, Chang C, Asai T. Real-Time Hybrid Simulation of a Smart Base-Isolated Building[J]. Journal of Engineering Mechanics. 2015;141(3):4014128.
[6] 陈永盛,吴斌,王贞,等. 基于Simulink的混合试验系统及其验证[J]. 振动与冲击. 2014;33(7):18-23.
 Chen Yong-sheng, Wu Bin, Wang Zhen, et al. Simulation and validation of a hybrid testing system with Simulink[J]. Journal of Vibration. 2014;33(7):18-23.
[7] Darby AP, Williams MS, Blakeborough A. Real-Time Substructure Tests Using Hydraulic Actuator[J]. Journal of Engineering Mechanics. 1999;125(10):1133-9.
[8] 袁涌, 熊世树,青木彻彦. 基于速度控制型子结构试验的橡胶隔振支座性能研究[J]. 振动与冲击.2008,27(6):151-154.
Yuan Yong,Xiong Shishu,Tetushiko Aoki. Rubber Bearing Performance Basing on a Real-time Substructure Hybrid Loading Test with Velocity Control[J]. Journal of Vibration and Shock.2008,27(6):151-154.
[9] Castaneda N, Gao X, Dyke S. A real-time hybrid testing platform for the evaluation of seismic mitigation in building structures[C]. Proceedings of the 2012 Structures Congress Conference, Chicago, USA. 2012.
[10] Chen C, Ricles J M. Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme [J]. Earthquake Engineering and Structural Dynamics ,2009,38(10):1237-1255.
[11] Guo T, Chen C, Xu WJ, et al. A frequency response analysis approach for quantitative assessment of actuator tracking for real-time hybrid simulation[J]. Smart Materials and Structures, 2014, 23(4): 045042.
[12] Mercan O. Analytical and experimental studies on large scale real-time pseudo dynamic testing[D]. Lehigh University: Department of Civil and Environmental Engineering,  2007.
[13] Constantinou M C, Tsopelas P, Kasalanati A, et al. Property modification factors for seismic isolation bearings[M]//Technical Report MCEER. US Multidisciplinary Center for Earthquake Engineering Research (MCEER), 1999, 99.

PDF(2926 KB)

442

Accesses

0

Citation

Detail

段落导航
相关文章

/