球体垂直入水过程流体动力数值研究

孙钊,曹伟, 王聪

振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 165-172.

PDF(2206 KB)
PDF(2206 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 165-172.
论文

球体垂直入水过程流体动力数值研究

  • 孙钊,曹伟, 王聪
作者信息 +

Numerical Investigations of hydrodynamic force acting on sphere during water entry

  • Sun ZhaoCao WeiWang Cong
Author information +
文章历史 +

摘要

采用VOF(Volume of Fluid)多相流模型耦合CSF(The Continuum Surface Force Model)模型,对亲水性及疏水性球体垂直入水过程进行了数值研究。将数值结果与文献实验结果对比,验证了数值方法的可靠性。在此基础上,开展亲水性及疏水性球体垂直入水数值研究。结果表明,亲水性球体在较低入水速度下不产生入水空泡,而疏水性球体产生较大入水空泡,空泡在自由液面以下某一位置闭合形成“沙漏状”空泡形态。入水初期在球体表面形成液体薄层运动是导致空泡形成与否的关键因素,对于亲水性球体,液体薄层沿球体表面向上运动并在球体顶点位置汇聚形成向上的溅射流,不产生入水空泡;对于疏水球体,液体薄层在球体赤道位置附近与球体表面分离,导致空气进入,形成入水空泡。通过球体入水过程运动轨迹、速度、加速度,分析了表面润湿性及密度对球体入水过程运动参数的影响。最后,分析了球体入水过程中受到的总流体动力,发现亲水性球体在垂直入水过程中下落速度更快,守到更小的总流体动力,表明其受到更小的阻力。

Abstract

The water entry of hydrophilic and hydrophobic spheres with different density was investigated by numerical simulations. During the simulation, the Reynolds-Averaged-Navier–Stokes equations are solved with VOF(volume of fluid) method coupled with the CSF method(The Continuum Surface Force Model). Numerical results with different wetting properties and different densities are presented, and directly compared with the experimental results from published literature, showing a good agreement with the experimental results, demonstrating the simulation methodology is trustable in this problem. Based on this methodology, the water entry cavity createdby sphere is investigated. The fluid film developing during the early stage of water entry is shown, and this is helpful for illustrating the mechanism of water entry cavity formation. The effect of wetting properties on the sphere’s trajectory, velocity, acceleration are discussed. Finally, the total hydrodynamic forces acting on the sphere during water entryareinvestigated, showing that the hydrodynamic force acting on hydrophilic sphere is much smaller than hydrophobic sphere, and the hydrophilic sphere descend more quickly during water entry, indicating a much smaller drag force.
 

关键词

球体 / 入水空泡 / 润湿性 / 数值研究 / 流体动力

Key words

sphere water-entry / cavity formation / wettability / numerical simulation / hydrodynamic force

引用本文

导出引用
孙钊,曹伟, 王聪. 球体垂直入水过程流体动力数值研究[J]. 振动与冲击, 2017, 36(20): 165-172
Sun ZhaoCao WeiWang Cong. Numerical Investigations of hydrodynamic force acting on sphere during water entry[J]. Journal of Vibration and Shock, 2017, 36(20): 165-172

参考文献

[1] Faltinsen, O. M. & Zhao, R. Water entry of ship sections and axisymmetric bodies[J]. AGARD Q2 FDP and Ukraine Institute of Hydromechanics Workshop on High-Speed Body Motion in Water 1997,24, 11.
[2] Rosellini, L., Hersen, F., Clanet, C. & Bocquet, L. Skipping stones[J]. J. Fluid Mech. 2005, 543,137–146
[3] May, A. Vertical entry of missiles into water[J]. J. Appl. Phys.1952, 23, 1362–1372.
[4] J. W. M. Bush and D. L. Hu. Annu. Rev. Fluid Mech. 2006, 38 339
[5] von Karman, T. The impact on seaplane floats during landing[J]. Technical Notes 321. National Advisory Committee for Aeronautics, Aerodynamic Institute of the Technical High School, Aachen.1929
[6] May, A. Water entry and the cavity-running behaviour of missiles[J]. Final. Naval Surface Weapons Center White Oak Laboratory, Silver Springs, MD. 1975
[7] Bell, G. E. On the impact of a solid sphere with a fluid surface[J]. Phil. Mag. 1924, 48, 753–764.
[8] May, A. & Woodhull, J. C. The virtual mass of a sphere entering water vertically[J]. J. App. Phys. 1950, 21, 1285–1289.
[9] Richardson, E. G. The impact of a solid on a liquid surface[J]. Proc. Phys. Soc. 1948, 4, 352–367.
[10] May, A. Effect of surface condition of a sphere on its water-entry cavity[J]. J. Appl. Phys. 1951, 22, 1219–1222.
[11] May, A. & Hoover, W. R. A study of the water-entry cavity[J]. Unclassified NOLTR 1963,63-264.
[12] Abelson, H. I. Pressure measurements in the water-entry cavity[J]. J. Fluid Mech. 1970, 44, 129–144.
[13] Worthington A M. A study of splashes[M]. London: Longmans,Green,1908.
[14] Duez, C., Ybert, C., Clanet, C., Bocquet, L., Making a splash with water repellency[J]. Nature Physics 2007,3, 180–183.
[15] Minh Do-quang, Gustav Amberg. The splash of a solid sphere impacting on a liquid surface: Numerical simulation of the influence of wetting[J]. Physics of Fluids. 2009, 21 022102.
[16] John Abraham, John Gorman, Franco Reseghetti, Ephraim Sparrow, John Stark, Thomas Shepard 2014 Ocean Engineering 76 1-9.
[17] J. U. Brackbill, D.B. Kothe, and C. Zemach. A Continuum Method for Modeling Surface Tension. J. Comput. Phys. 1992, 100 335-354.
[18] B. E. Launder and D. B. Spalding. Lectures in Mathematical Models of Turbulence. Academic Press, London, England. 1972.
[19] Glasheen, J.W., McMahon, T.A., Vertical water entry of disks at low froude numbers[J]. Physics of Fluids 1996, 8 (8), 2078–2083.
[20] Truscott, T.T., Techet, A.H., Water entry of spinning spheres[J]. Journal of Fluid Mechanics. 2009, 623, 135–165.
[21] Gilbarg, D. & Anderson, R. A. Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water[J]. J. Appl. Phys. 1948, 19, 127–139.
[22] A. A. Korobkin and V. V. Pukhnachov. Initial stage of water impact[J]. Annu. Rev. Fluid Mech. 1988,  20, 159.

PDF(2206 KB)

Accesses

Citation

Detail

段落导航
相关文章

/