新型磁浮车动力学仿真分析

汪科任1,罗世辉1,宗凌潇2,马卫华1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 23-29.

PDF(2396 KB)
PDF(2396 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 23-29.
论文

新型磁浮车动力学仿真分析

  • 汪科任1,罗世辉1,宗凌潇2,马卫华1
作者信息 +

The Dynamic Simulation Analysis of New Maglev Train 

  • WANG Ke-ren1, LUO Shi-hui1, ZONG Ling-xiao2, MA Wei-hua1
Author information +
文章历史 +

摘要

为探究新型磁浮列车的动力学特性,利用SIMPACK软件建立了其56自由度的中低速磁浮车辆模型并进行相关仿真分析,并采用单悬浮架模型进行了乘坐舒适性试验验证。仿真结果表明:新型磁浮列车能够实现140km/h在直线段稳定运行,车体横向加速度小于0.2m/s2,车体垂向加速度小于0.5m/s2,空载情况下能够实现30km/h通过半径为50m的弯道,车辆最大侧滚角不足0.04rad,车体最大横向加速度小于1m/s2,车体垂向加速度小于0.1m/s2,悬浮间隙动态变化量最大仅为0.5mm。 试验结果表明:以140km/h的速度运行,与乘坐舒适性密切相关的车体垂向加速度约为0.5m/s2。
 

Abstract

To explore the dynamic characteristics of the new type of maglev train, a new model with 56 degrees of freedom was established and simulated, and a single suspension frame model was used as a test rig for ride comfort. The simulation results show that the new type of maglev train can be stable operation at the speed of 140km/h on the straight line; Lateral acceleration of car body is less than 0.2 m/s2; vertical acceleration of car body is less than 0.5m/s2; the new type of maglev train can stably pass through the curve with the radius of 50m at the speed of 30km/h; the largest car body roll Angle is less than 0.04 rad; lateral acceleration of car body is less than 1m/s2; vertical acceleration of car body is less than 0.1m/s2; dynamic variation of levitation clearance is only 0.5mm. The test results show that car body vertical acceleration related to ride comfort is about 0.5m/s2 at the speed of 140km/h.
 

关键词

新型磁悬浮列车
/ 走行机构 / 弹簧中置 / SIMPACK软件

Key words

a new type of maglev train / running mechanism / dynamics simulation / ride comfort

引用本文

导出引用
汪科任1,罗世辉1,宗凌潇2,马卫华1. 新型磁浮车动力学仿真分析[J]. 振动与冲击, 2017, 36(20): 23-29
WANG Ke-ren1, LUO Shi-hui1, ZONG Ling-xiao2, MA Wei-hua1. The Dynamic Simulation Analysis of New Maglev Train [J]. Journal of Vibration and Shock, 2017, 36(20): 23-29

参考文献

[1] Yaghoubi H, Ziari H. Development of a  maglev vehicle/guideway system interaction  model and comparison of the guideway  structural analysis with railway bridge  structures[J].Journal of Transportation  Engineering,2010, 137(2): 140-154.
[2] Fujiwara O, Wang J, ISHIMOTO S.  Environment Impact Assessment on the  TOBU-KYURYO-LINE (Hsst System) in  Japan[C]//Proceedings of the 18th International Conference on Magnetically Levitated Systems and Linear Drives MAGLEV.2004: 632-635.
[3] 邓永权,罗世辉,梁红琴.基于SIMPACK的 磁悬浮车辆耦合动力学性能仿真分析[J].交 通运输工程学报,2007,7(1):13-16.
DENG Yong-Quan, LUO Shi-hui, LIANG Hon-g-qin. Simulation model of maglev couping  dynamics performance based on  SIMPACK[J].Journal of Traffic and Transportation Engineeri-  ng, 2007, 7(1): 13-16.
[4] 叶学艳,赵春发,翟婉明.低速磁浮车辆动力 学建模与导向机构仿真分析[J].交通运输 工程学报,2007,7(3):7-10.
Ye Xue-yan, Zhao Chun-fa, Zhai Wan-ming.  Dynamics modeling of low-speed maglev  vehicle system and simulation of its guidance  mechanisms[J]. Journal of Traffic and  Transportation Engineering, 2007, 7(3): 7-10.
[5] 翟婉明,赵春发.磁浮车辆/轨道系统动力学 (I)—磁/轨相互作用及稳定性[J].机械 工程学报,2005,41(7):1-10.
ZHAI Wan-ming, ZHAO Chun-fa. Dynamics of  vehicle/guideway systems(I)—magnet/rail  interaction and system stability[J]. Chinese  Journal of Mechanical Engineering, 2005, 41(7)  1-10.
[6] Jun-Seok Lee, Soon-Duck Kwo, Moon-Young  Kim, In Ho Yeo. A Parametric study on the  dynamics of urban transit maglev vehicle  running on flexible guide-way bridges[J].  Journal of Sound and Vibration, 2009, 3(28):  301-317.
[7] J.D.Yau.Vibration control of  maglev vehicles traveling over a flexible guideway[J]. Journal of  Sound and Vibration 2009, 3(21): 184-200.
[8] 赵志苏,尹力明,罗坤.磁悬浮列车转向机构 运动分析与设计[J]. 机车电传动,2000,6 (4):10-13.
ZHAO Zhi-su, YIN Li-ming, LUO Kun. Motion  analysis and design for yawing mechanism of  maglev vehicle[J]. Electric Drive for  Locomotive, 2000, 6(4): 10-13.
[9] 赵春发,翟婉明.磁浮车辆轨道系统动力学 (II)—建模与仿真[J].机械工程学报,2005, 41(8):163-175.
ZHAO Chun-fa, ZHAI Wan-ming. Dynamics of  maglev vehicle/guideway system(II)—modeling  and simulation[J]. Chinese Journal of  Mechanical Engineering, 2005, 41(8): 163-175.
[10] Ren S, Romeijn A, Klap K. Dynamic simulation of the maglev vehicle/guideway system[J].  Journal of Bridge Engineering, 2009, 15(3): 269-278.
[11] Shi J, Wang Y J. Dynamic response analysis of single-span guideway caused by high speed  maglev train[J]. Latin American Journal of  Solids and Structure, 2011, 8(3): 213-228.
[12] 洪华杰,李杰. 磁浮系统模型中用弹簧阻 尼器替代控制器的等效性分析[J]. 国防 科技大学学报,2005,27(4):101-105.
HONG Hua-jie, LI Jie. The Analysis of the  Equivalence of Substitution the Controllers with  the Spring-dampers in Maglev System Model[J].Journal of National University of Defense  Technology, 2005, 27(4): 101-105.
[13] MEISINGER R.Control systems for flexible  maglev vehicles riding over  flexible guideyway [J]. Vehicle System Dynamics, 1975, 4(2/3): 200-202.
[14] Brezina W, Langerholc J. Lift and side force on  rectangular pole pieces in two dimensions[J].  Journal of Applied Physics, 1974, 45(4): 1869-  1872.
[15] Zhao C F, Zhai W M. Maglev vehicle/guideway  vertical random response and ride quality[J].  Vehicle System Dynamics, 2002, 38(3):  185-210.
[16] 张耿,李杰,杨子敬. 低速磁浮轨道不平顺功 率谱研究[J]. 铁道学报,2011,33(10):73-78. ZHANG Geng, LI Jie, YANG Zi-jing.  Estimation of Power Spectrum Density Track  Irregularities of Low-speed Maglev Railway  Lines[J]. Journal of The China Railway Society,  2011, 33(10): 73-78.
[17] 林志雄,周岱. 上海磁浮列车轨道梁系统简述 [J]. 中国铁道科学,2003,24(1):104-107.
LIN Zhi-xiong, ZHOU Dai.  The System Briefly of Maglev-train track beam In Shanghai[J].  China Railway Science, 2003, 24(1): 104-107.
[18] 张卫华.机车车辆动态模拟[M].北京:中国铁 道出版社,2006:283-291.
ZHANG Weihua.Dynamic simulation of railway  vehicles[M].Beijing:China Railway Publishing  House,2006:283-291.
[19] 梁鑫,罗世辉,马卫华.基于相似原理 的磁浮 车桥耦合振动研究[J].铁道科学工程学报, 2014, 11(3):31-36.
LING Xin,LUO Shihui,MA  Weihua.Studdy on  coupling vibration of  maglev vehicle-bridge  based on the  similarity theory[J].Journal of  Railway  Science and Engineering,2014, 11(3):  31-36.

PDF(2396 KB)

Accesses

Citation

Detail

段落导航
相关文章

/