将曲线轨道视为周期性离散支撑结构,根据周期性结构的振动特性,通过引入移动荷载作用下曲线轨道梁的数学模态以及广义波数,得出曲线轨道梁频域响应的级数表达,进而求解固定谐振荷载作用下曲线轨道梁平面外弯扭耦合振动的响应特性。通过计算不同频率固定谐振荷载作用下曲线轨梁的动力响应,可以求得曲线轨梁垂向位移频响特性。对单层离散点支撑轨道模型进行计算分析可知:曲线轨道梁一阶自振频率受扣件支点垂向支撑刚度、垂向支撑阻尼系数、扣件支点间距变化影响较大,扣件支点垂向支撑刚度增加时轨梁一阶自振频率提高,垂向支撑阻尼系数增加时轨梁一阶自振频率略有减少,扣件支点间距减小时轨梁一阶自振频率提高;扣件支点间距对曲线轨梁频响特性具有显著的影响,跨中处一阶pin-pin共振峰幅值及支点处反共振峰幅值随支点间距的增加而变大;曲线半径对地铁轨道轨梁垂向位移频响特性几乎没有影响。
Abstract
Modelling the dynamic behavior of a curved railway track subjected to fixed harmonic loads is important to understand its dynamic characteristics. The discretely supported curved Euler Beam is used to simulate dynamic response of curved track based on periodic structure. Mathematical modes of track and generalized wavenumber are introduced, and dynamic response of bending and torsion of curved track in frequency domain is expressed by series superposition of the mathematical modes. Dynamic response of curved track subjected to a fixed harmonic load is obtained, and some conclusions are obtained. The natural vibration frequency of curved beam is greatly affected by vertical stiffness, vertical damping coefficient and spacing of fasteners. The first-order natural frequency of track increased by increasing the vertical stiffness of fastener, but decreased slightly by increasing the vertical damping of fastener. The first-order natural frequency of track increasing as the fastener spacing is decreased. Fastener spacing has a significant influence on response of curved track. The bigger the fastener spacing is, the greater the amplitude of first order pin-pin resonance in mid-span and the bigger the amplitude of first order pin-pin anti-resonance in fastener support is. Radius has little effect on vertical displacement frequency response of curved track in metro.
关键词
曲线轨道 /
弯扭耦合 /
周期结构 /
频响特性
{{custom_keyword}} /
Key words
curved track /
coupling of bending and torsion /
modal superposition method /
periodical structure /
frequency response function.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 顾保南, 姜晓明, 程曜彦等. 论城市轨道交通最小曲线半径标准的选择[J]. 同济大学学报(自然科学版), 2003(04): 428-431.
GU Baonan, JIANG Xiaoming, CHENG Yaoyan, et.al. Study on Radius Standard of Urban Rail Transit in China[J]. JOURNAL OF TONGJI UNIVERSITY (Natural Science), 2003(04): 428-431.
[2] 李克飞. 基于变速及曲线车轨耦合频域解析模型的地铁减振轨道动力特性研究[D]. 北京交通大学, 2013.
LI Kefei. Study on the Dynamic Characteristics of Metro Vibration Mitigation Track based on the Frequency-domain Analytical Model of Coupled Vehicle & Track in Variable-speed and Curved Sections [D]. Beijing Jiaotong University, 2013.
[3] 袁扬. 地铁列车振动环境响应预测的人工单点列脉冲激励方法研究[D]. 北京交通大学, 2014.
YUAN Yang. Study on the Artificial Single-Point Pulse Excitations Method for Metro Train-Induced Environmental Vibration Prediction [D]. Beijing Jiaotong University, 2014.
[4] 孙建鹏, 李青宁. 曲线箱梁桥地震反应的频域精细传递矩阵法[J]. 地震工程与工程振动, 2009, 29(4): 139-146.
SUN Jianpeng, LI Qingning. Precise transfer matrix method for solving earthquake response of curved box bridges [J]. Earthquake Engineering and Engineering Dynamics, 2009, 29(4): 139-146.
[5] 魏双科. 曲线梁桥的固有振动特性及地震反应分析[D]. 南京工业大学, 2006.
WEI Shuangke. Natural Dynamic Characteristics and Seismic Response Analysis of Curved Girder Bridges [D]. Nanjing University of Technology, 2006.
[6] 姚玲森. 曲线梁[M]. 北京: 人民交通出版社,1989.
Yao Lingsen. Curved Beam [M]. Beijing: China Communications Press, 1989.
[7] VLASOV V. Z.. THIN-WALL ELASTIC BEAMS[M]. Washington D.C.: National Science Foundation,1961.
[8] 单德山. 高速铁路曲线梁桥车桥耦合振动分析及大跨度曲线梁桥设计研究[D]. 西南交通大学, 1999.
Shan Deshan. Curved-Girder Bridges and Vehicles Coupled Vibration Analysis and Design Study of the Long-Span Curved-Girder Bridges in High-Speed Railway [D]. Southwest Jiaotong University, 1999.
[9] 宋郁民, 吴定俊, 侯永姣. 列车通过小半径反向曲线桥梁的动力相互作用分析[J]. 工程力学, 2012(S1): 185-189.
Song Yumin, Wu Dingjun, Hou Yongjiao. Analysis of Dynamics Interaction About Train Curving Bridge on Small Radius and Reverse Curve [J].Engineering Mechanics, 2012(S1):185-189.
[10] YANG Y. B., WU C. M., YAU J. D. DYNAMIC RESPONSE OF A HORIZONTALLY CURVED BEAM SUBJECTED TO VERTICAL AND HORIZONTAL MOVING LOADS[J]. Journal of Sound and Vibration, 2001, 242(3): 519-537.
[11] 刘维宁, 李克飞, Markine V. L. 移动荷载作用下曲线轨道振动响应解析解研究[J]. 土木工程学报, 2013(1): 133-140.
Liu Weining, Li Kefei, Markine V. L. Analytical study on the vibration response of curved track structure subjected to moving loads [J]. China Civil Engineering Journal, 2013(1):133-140.
[12] 王开云. 提速和高速铁路曲线轨道轮轨动态相互作用性能匹配研究[D]. 西南交通大学, 2012.
Wang Kaiyun. Study on performance matching of wheel-rail dynamic interaction on curved track of speed-raised and high-speed railways [D]. Southwest Jiaotong University, 2012.
[13] 孙广华. 曲线梁桥计算[M]. 北京: 人民交通出版社,1995.
Sun Guanghua. Calculation of Curved Bridges [M]. Beijing: China Communications Press, 1995.
[14] 李惠生, 张罗溪. 曲线梁桥结构分析[M]. 北京: 中国铁道出版社,1992.
LI Huisheng, ZHANG Luoxi. Structure analysis of curved bridges [M]. Beijing: China Railway Publishing House, 1992.
[15] 汉斯 C. P., 吴绍本常岭译. 结构杆件的弯曲与扭转[M]. 北京: 人民交通出版社,1981.
Heins C.P.. Bending and torsion of structural members [M]. Beijing: China Communications Press, 1981.
[16] 翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社,2015.
Zhai Wanming. Dynamic of coupled vehicle and track [M]. Beijing:Science Press,2015.
[17] S. Nair, V.K. Garg, Y.S. Lai. Dynamic stability of a curved rail under a moving load [J]. Applied Mathematical Modelling, 1985,9:220-224.
[18] Martínez-Casas José, Di Gialleonardo Egidio, Bruni Stefanoet al. A comprehensive model of the railway wheelset–track interaction in curves [J]. Journal of Sound and Vibration, 2014, 333(18): 4152-4169.
[19] Belotserkovskiy P. M. Forced oscillations of infinite periodic structures [J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 1998: 85-103.
[20] 马龙祥, 刘维宁, 李克飞. 移动荷载作用下浮置板轨道振动响应的频域快速数值算法[J]. 铁道学报, 2014(02): 86-94.
MA Longxiang, LIU Weining, LI Kefei. Fast Numerical Algorithm of Floating Slab Track Vibration Response under Moving Loads in the Frequency Domain [J]. JOURNAL OF THE CHINA RAILWAY SOCIETY, 2014(02): 86-94.
[21] 马龙祥. 基于无限—周期结构理论的车轨耦合及隧道—地层振动响应分析模型研究[D]. 北京交通大学, 2015.
MA Longxiang. Study on the Model of Coupled Vehicle & Track and the Prediction Model for Tunnel-ground Vibration Response based on the Periodic-infinite Structure Theory [D]. Beijing Jiaotong University, 2014.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}