针对汽车准双曲面齿轮动力学系统建模中齿轮时变啮合刚度计算困难的问题,本文提出一种完整的基于有限元法计算准双曲面齿轮啮合刚度的计算方法。首先,详细描述利用有限元方法计算齿轮啮合刚度理论模型,并利用此模型计算直齿渐开线齿轮啮合刚度,结果表明此方法计算结果与KUANG模型计算结果一致。然后,利用MATALAB和CATIA建立了准双曲面齿轮三维几何模型,并在ABAQUS中建立此齿轮准静态啮合有限元模型。最后,详细论述了由准双曲面齿轮啮合有限元分析结果后处理得到啮合刚度计算过程,并对不同载荷下齿轮啮合刚度的变化趋势进行讨论。结果表明,准双曲面齿轮啮合过程中啮合刚度随齿轮旋转位置和所加载力矩周期性变化,其变化周期等于齿轮啮合周期;当齿轮加载力增大齿轮啮合刚度平均值增大,同时啮合刚度的波动减小。
Abstract
In the automotive driver axle hypoid gear meshing process, it is difficult to calculate the time varying mesh stiffness. To solve this problem, a complete calculation method is proposed, which is based on the finite element method. Firstly, a detailed process was described for the gear mesh stiffness calculation mathematical model, by the finite element method, and the meshing stiffness of the straight involute gear is calculated using this model. The results indicate that this method is consistent with the results of kuang model. Secondly, a three-dimensional model of hypoid gears is built by MATALAB and CATIA, and a quasi static engagement finite element model is established in ABAQUS software for that. Finally, the calculation process has been discussed detailedly for the gear mesh stiffness, and the gear mesh stiffness variations are analyzed under different loading. The results show that the gear mesh stiffness cycle varies with the gear rotating and the load torque changing, and the period of gear meshing stiffness is equal to the period of gear meshing. The average value of the gear meshing stiffness increases and the fluctuation reduces when the gear load torque increases.
关键词
准双曲面齿轮 /
时变啮合刚度 /
三维模型 /
有限元分析
{{custom_keyword}} /
Key words
hypoid gear /
time varying mesh stiffness /
three-dimensional model /
finite element analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] I. Karagiannis, S. Theodossiades. An alternative formulation
of the dynamic transmission error to study the oscillations of automotive hypoid gears[J].AMSE Journal of Vibration and Acoustics,2014, 136 (2), 011001(1-11).
[2] Faydor L.Litvin,Alfonso Fuentes.Gear Geometry and applied theory[M]. New York: Cambridge University Press, 2004.
[3] Hongbin Wang, Teik C. Lim. Analysis of the mesh characteristics of hypoid gear pair dynamics[C]// ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference Chicago, Illinois, USA, September 2-6, 2003, DETC2003-48053
[4] Yawen Wang, Teik C. Lim.Torque load effects on mesh and dynamic characteristics of hypoid geared system[C]// ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2013, Portland, Oregon, USA, August 4-7, 2013, DETC2013-13594.
[5] 王立华. 汽车螺旋锥齿轮传动耦合非线性振动研究[D]. 重庆: 重庆大学, 2003.
WANG Lihua. Study on coupling non-linear vibration of automobile helical bevel gear transmissions system[D]Chong Qing: Chongqing University 2003.
[6] 杨宏斌,高建平,方宗德,等. 准双曲面齿轮非线性振动分析[J]. 汽车工程,2000,01(22):51-54.
Yang Hongbin,Gao Jianping,Fang Zongde,et al.Non-linear Dynamics of Hypoid Gears[J].Automobile Engineering, 2000,01(22):51-54.
[7] 冯治恒. 螺旋锥齿轮多体多自由度非线性动力学研究[D].重庆:重庆大学,2010.
Feng Zhiheng.Research on multi-body multi-DOF nonlinear dynamic of helical bevel gear [D]Chong Qing: Chongqing University ,2010.
[8] J. H. Kuang, A. D. Lin.The Effect of Tooth Wear on the Vibration Spectrum of a Spur Gear Pair[J]. ASME Journal of Vibration and Acoustics,2001,123(7):311-317.
[9] M. Mohammadpour, S. Theodossiades, H. Rahnejat. Multiphysics Investigations on the Dynamics of Differential Hypoid Gears[J]. AMSE Journal of Vibration and Acoustics,2014,136(8): 041007(1-15).
[10] I. Karagiannis, S. Theodossiades , H. Rahnejat. On the dynamics of lubricated hypoid gears[J]. Mechanism and Machine Theory, 2012,48 (1) :94-120.
[11] 方宗德. 准双曲面齿轮传动的动载荷计算[J]. 汽车工程,1994,02(16):92-97.
Fang Zongde. Dynamic load calculation of hypoid gear [J].Automobile Engineering, 1994,02(16):92-97.
[12] 唐进元, 浦太平.基于有限元法的螺旋锥齿轮啮合刚度计算[J]. 机械工程学报,2011,47(11):23-29.
TTANG Jinyuan,PU Taiping. Spiral Bevel Gear Meshing Stiffness Calculations Based on the Finite Element Method [J]. Journal of mechanical engineering, 2011,47(11):23-29.
[13] Claude Gosselin, Thierry Guertin, Didier Remond, et al. Simulation and experimental measurement of the transmission error of real hypoid gears under load[J]. AMSE Journal of Mechanical Design,2000, 122 (3):109-122.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}