两端固定载流管非线性振动IHB方法研究

王鹏1,张咏鸥1,王晟1,张涛1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 248-253.

PDF(1068 KB)
PDF(1068 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 248-253.
论文

两端固定载流管非线性振动IHB方法研究

  • 王鹏1,张咏鸥1,王晟1,张涛1
作者信息 +

Nonlinear vibration of hinged pipes conveying fluid with IHB method

  • WANG Peng1,ZHANG Yongou1,WANG Sheng1,ZHANG Tao1
Author information +
文章历史 +

摘要

增量平衡谐波法(IHB法)可用于求解两端简支载流管的非线性振动问题。考虑非线性约束及集中质量点的影响,利用Hamilton原理建立两端简支载流管运动微分方程,经Galerkin离散后,通过改变控制变量频率比得到系统的幅频特性曲线。讨论了系统运动参数例如速度、质量比、非线性约束刚度及质量点对系统幅频特性的影响。计算结果表明增量平衡谐波法是一种求解载流管非线性振动较为有效的方法。

Abstract

The nonlinear vibration of simply supported pipes conveying fluid was investigated by the incremental harmonic balance method. The differential equations of motion of simply supported pipes conveying fluid were derived based on the Hamilton principle, considering the influence of the nonlinear constraint and the tip lumped masses. The equations were discretized by Galerkin scheme. The amplitude-frequency characteristics curves of the pipes conveying fluid were obtained by changing the frequency ratio. The effect of the fluid speed, mass ratio, the stiffness of the nonlinear constraint, and the tip lumped masses on the amplitude-frequency characteristics of the pipes conveying fluid were discussed. The results show that the incremental harmonic balance method is an effective method to solve the problem of the nonlinear vibration of the pipes conveying fluid.
 

关键词

载流管 / 增量平衡谐波法 / 非线性约束 / 质量点

Key words

pipes conveying fluid / incremental harmonic balance method / nonlinear constraint / the tip lumped masses

引用本文

导出引用
王鹏1,张咏鸥1,王晟1,张涛1. 两端固定载流管非线性振动IHB方法研究[J]. 振动与冲击, 2017, 36(20): 248-253
WANG Peng1,ZHANG Yongou1,WANG Sheng1,ZHANG Tao1. Nonlinear vibration of hinged pipes conveying fluid with IHB method[J]. Journal of Vibration and Shock, 2017, 36(20): 248-253

参考文献

[1] 周知进, 陈雄, 康红军, 等. 海流冲击对深海采矿装备液压管道流固耦合振动的影响[J]. 噪声与振动控, 2015, 02: 7-10, 111.
ZHOU Zhi-jin, CHEN Xiong, KANG Hong-jun, et al. Influence of ocean current inpact on fluid-structure coupled vibration of deep-sea mining equipment’s hydraulic pipelines[J]. Noise and vibration control, 2015, 2: 7-10, 111.
[2] 田家林, 袁长福, 杨琳, 等. 输气管道气固耦合振动特性分析[J]. 机械科学与技术, 2016, 07: 1028-1034.
TIAN Jia-lin, YUAN Chang-fu, YNAG Lin, et al. The vibration characteristics analysis of gas and solid coupling in gas pipelines[J]. Mechanical science and technology for aerospace engineering, 2016, 07: 1028-1034.
[3] Lee U, Pak C, Hong S C. The dynamics of a piping system with internal unsteady flow[J]. Journal of Sound and Vibration, 1995. 180(2): 297-311.
[4] 张立翔,黄文虎. 输流管道非线性流固耦合振动的数学建模[J].水动力学研究与进展A辑,2000, 15(1): 116-128.
ZHANG Li-xiang, HUANG Wen-hu. Nonlinear dynamical modeling of fluid-structure interaction of fluid-conveying pipes[J]. Journal of Hydrodynamics, Ser A, 2000, 15(1): 116-128.
[5] Wadham Gagnon M, Païdoussis M P, Semler C. Dynamics of cantilevered pipes conveying fluid. Part 1: Nonlinear equations of three-dimensional motion[J]. Journal of Fluids and Structures, 2007, 23(4): 545-567.
[6] Modarres Sadeghi Y, Païdoussis M P. Nonlinear dynamics of extensible fluid-conveying pipes, supported at both ends[J].  Journal of Fluids and Structures, 2009, 25(3): 535-543.
[7] Kuo B, Lo C. Application of the differential transformation method to the solution of a damped system with high nonlinearity[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70(4): 1732-1737.
[8] Gu J, An C, Duan M, et al. Integral transform solutions of dynamic response of a clamped–clamped pipe conveying fluid[J]. Nuclear Engineering and Design, 2013, 254: 237-245.
[9] Semler C, Gentleman W C, Paı̈doussis M P. Numerical solutions of second order implicit non-linear ordinary differential equations[J]. Journal of Sound and Vibration, 1996, 195(4): 553-574.
[10] 倪樵, 黄玉盈. 增量谐波平衡法用于输液管的非线性振动分析[J]. 华中理工大学学报, 2000, 10: 43-45.
NI Qiao, HUANG Yu-ying. Incremental harmonic balance method fornonlinear vibration of pipe conveying fluid[J]. Journal of Huazhong University of Science and Technology, 2000, 10: 43-45.
[11] 梁峰, 杨晓东, 闻邦椿. 基于增量谐波平衡法的两端固定输流管参数共振[J]. 机械工程学报, 2009, 7: 126-130.
LIANG Feng, YANG Xiao-dong, WEN Bang-chun. Parametric resonances of clamped-clamped pipes conveying fluid by incremental harmonic balance method[J]. Journal of Mechanical Engineering, 2009, 7: 126-130.
[12] Païdoussis M P, Semler C. Non-linear dynamics of a fluid-conveying cantilevered pipe with a small mass attached at the free end[J]. International Journal of Non-Linear Mechanics, 1998, 33(1): 15-32.
[13] 倪樵, 黄玉盈. 非线性约束粘弹性输液管的动力特性分析[J].华中科技大学学报, 2001, 02: 87-89.
NI Qiao, HUANG Yu-ying. Dynamic analysis of restrained viscoelastic pipe conveying fluid[J]. Journal of Huazhong University of Science and Technology, 2001, 02: 87-89.
[14] Paı̈doussis M P, Li G X. Pipes conveying fluid: a model dynamical problem[J]. Journal of Fluids and Structures, 1993, 7(2): 137-204.
[15] Cheung Y K, Chen S H, Lau S L. Application of the incremental harmonic balance method to cubic non-linearity systems[J]. Journal of Sound and Vibration, 1990, 140(2): 273-286.
[16] 王琳. 输流管道的稳定性、分岔与混沌行为研究[D]. 武汉:华中科技大学, 2006.

PDF(1068 KB)

Accesses

Citation

Detail

段落导航
相关文章

/