振动拉削双阀激振系统输出波形稳定性分析及实验研究

蒙 臻1,倪 敬1,武传宇2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 84-90.

PDF(1181 KB)
PDF(1181 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (20) : 84-90.
论文

振动拉削双阀激振系统输出波形稳定性分析及实验研究

  • 蒙 臻1,倪  敬1,武传宇2
作者信息 +

Experimental and analysis on output waveform stability of dual-valve excitation system during vibration broaching

  • MENG Zhen1, NI Jing1, WU Chuan-yu2
Author information +
文章历史 +

摘要

为了分析振动拉削系统在加工过程中电液激振输出幅值稳定性问题,首先引入流量耦合线性模型和拉削负载力模型,构建了双阀激振系统的传递函数,推导了系统输出位移和输出力的时域响应函数;再利用MATLAB仿真计算及绘制开环系统的Bode图和幅值时域响应曲线;最后,利用自行研制的振动拉削实验平台所测得的激振器输出幅值与仿真结果进行对比分析,研究结果表明:激振信号的频率会影响输出波形的平衡位置及波动幅值,激振信号频率越高,输出波形越容易调节;而拉削负载力主要影响输出波形的振荡次数,负载力越大,输出波形越不稳定。因此,为了使拉削过程中激振输出波形更加稳定,一方面可适当提高激振缸缸径和行程的比值,以增大系统极限响应频率,另一方面需蓄能装置或大流量型开关阀平衡激振缸容腔压力配比。

Abstract

In order to investigate the output amplitude stability of excitation system during vibration broaching, a transfer function of dual-valve excitation system was established by considering the flow coupled linear model and the broaching force model. And the time domain response function of output force and displacement was obtained based on the transfer function. Then, the simulate results of aforementioned function was calculated by MATLAB, including Bode diagram and response curve of time domain. At last, the experimental data were compared with simulation results, which obtained from the novel vibration broaching platform. The results show that the frequency of the excitation signal affects the balance position and the amplitude of output waveform. The higher the frequency of the signal, the easier the output waveform can be adjusted. The oscillation frequency of the output waveform is mainly affected by the broaching force. The greater the force, the more unstable the output waveform was. Therefore, to make the output waveform more stable, the ratio of vibration cylinder bore and stroke should be improved, which could increase the response frequency. On the other hand, the energy storage device and flow type valve should be added, which could balance the pressure ratio of vibration cylinder cavity.
 
 

关键词

振动拉削 / 电液激振 / Bode图 / 波形稳定性

Key words

vibration broaching / electrical-hydraulic excitation / Bode diagram / waveform stability

引用本文

导出引用
蒙 臻1,倪 敬1,武传宇2. 振动拉削双阀激振系统输出波形稳定性分析及实验研究[J]. 振动与冲击, 2017, 36(20): 84-90
MENG Zhen1, NI Jing1, WU Chuan-yu2. Experimental and analysis on output waveform stability of dual-valve excitation system during vibration broaching[J]. Journal of Vibration and Shock, 2017, 36(20): 84-90

参考文献

[1]. 隈部淳一郎. 精密加工振动切削基础与应用[M]. 北京:机械工业出版社,1985.
[2]. 余洋,石博强,侯友山. 结构刚度对液压伺服系统稳定性影响分析[J]. 农业工程学报,2011,(27):32-35.
YU Yang, SHI Boqiang, HOU Youshan. Analysis on stability of hydraulic servo systems affected by structure stiffness[J]. Transactions of the CSAE,2011,(27):32-35.
[3]. 姜万录,朱勇,郑直,等.电液伺服系统非线性振动机理及试验研究[J]. 机械工程学报,2015,51(4):175-184.
JIANG Wanlu,ZHU Yong,ZHENG Zhi,et al. Nonlinear vibration mechanism of electro-hydraulic servo system and its experimental verification[J]. Journal of Mechanical Engineering,2015,51(4):175-184.
[4]. 葛振亮,侯友山,姜勇. 工程车辆全液压转向系统管路特性分析[J]. 振动与冲击,2011,30(3):60-63,84.
GE Zhenliang, HOU Youshan, JIANG Yong. Dynamic characteristics analysis of hydraulic pipes in fully hydraulic steering system of engineering vehicles[J]. Journal of Vibration and Shock,2011,30(3):60-63,84.
[5]. 金智林,郭立书,施瑞康,等. 汽车电控液压制动系统动态性能分析及试验研究[J]. 机械工程学报,2012,48(12):127-132.
JIN Zhilin, GUO Lishu, SHI Ruikang, et al. Experimental study on dynamic characteristics of electro hydraulic brake system for vehicle[J]. Journal of Mechanical Engineering,2012,48(12):127-132.
[6]. 滕韬,夏毅敏,杨务滋,等. 盾构刀盘驱动液压系统压力冲击吸收特性分析[J]. 浙江大学学报(工学版),2011,45(5):864-868.
TENG Tao, XIA Yiming, YANG Wuzi, et al. Characteristics analysis of pressure impact absorption for shield cutter head drive hydraulic system[J]. Journal of Zhejiang University(Engineering Science) ,2011,45(5):864-868.
[7]. 李锦,黄长征. 盾构机液压推进系统稳定性研究[J]. 液压与气动,2014,(3):54-57.
LI Jin, HUANG Changzheng. Study on stability of hydraulic propulsion system for shiled tunneling machine[J]. Chinese Hydraulics & Pneumatics,2014,(3):54-57.
[8]. 王爱国. 全液压矫直机液压伺服非线性系统稳定性研究[J]. 太原科技大学学报,2014,35(6):443-447.
WANG Aiguo. Research on the stability of nonlinear systems in hydraulic leveler of hydraulic servo system[J]. Journal of Taiyuan University of Science and Technology,2014,35(6):443-447.
[9]. AMIRANTE R,DISTASO E,TAMBURRANO P. Experimental and numerical analysis of cavitation in hydraulic proportional directional valves[J]. Energy Conversion and Management,2014,(87):208-219.
[10]. YANG Z S,HE Z B,LI D W,et al. Hydraulic amplifier design and its application to direct drive valve based on magnetostrictive actuator[J]. Sensors and Actuators A:Physical,2014,(216):52-63.
[11]. ZHAO J B,WANG J Z,WANG S K. Fractional order control to the electro-hydraulic system in insulator fatigue test device[J]. Mechatronics,2013,(23):828-839.
[12]. SHEN G,ZHU Z C,ZHANG L,et al. Adaptive feed-forward compensation for hybrid control with acceleration time waveform replication on electro-hydraulic shaking table[J]. Control Engineering Practice,2013,(21):1128-1142.
[13]. SIBIELAK M. Optimal controller for vibration isolation system with controlled hydraulic damper by piezoelectric stack[J]. Mechanical System and Signal Processing,2013,(36):118-126.
[14]. H. E. 梅里特. 液压控制系统[M]. 北京:科学出版社,1976.
[15]. 罗惕乾. 流体力学(第3版)[M]. 北京:机械工业出版社,2014.
[16]. 袁哲俊,刘华明. 金属切削刀具设计手册[M]. 北京:机械工业出版社,2008.
[17]. 成大先. 机械设计手册(第五版):单行本,液压控制[M]. 北京:化学工业出版社,2010.

PDF(1181 KB)

Accesses

Citation

Detail

段落导航
相关文章

/