剪切变形与转动惯量对层合金属厚壁短管振动模态的影响

郭建英1 白艳艳2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 107-116.

PDF(2424 KB)
PDF(2424 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 107-116.
论文

剪切变形与转动惯量对层合金属厚壁短管振动模态的影响

  • 郭建英1  白艳艳2
作者信息 +

Effects of shear deformation and rotary inertia on vibration of laminated thick-walled short tubes

  • GUO Jian-ying1  BAI Yan-yan 2 
Author information +
文章历史 +

摘要

对层合金属厚壁短管进行振动分析必须考虑非匀质、剪切变形和转动惯量效应。基于Timoshenko理论,推导了两端简支、两端固支、两端自由和悬臂四种边界条件下,层合金属厚壁短管弯曲振动的频率函数与模态振型函数的表达式。采用计算机代数系统MAPLE对四种边界条件下铜钢层合厚壁短管的固有频率进行求解,并绘制振型曲线。采用锤击实验法并结合有限元模态分析法,测得了铜钢层合厚壁短管在两端自由条件下弯曲振动的固有频率。理论解与实测值相比的最大误差为-4.56%,理论解与有限元解相比的最大误差为-0.76%。求解了剪切变形与转动惯量对铜钢层合厚壁短管固有频率的影响系数,并分析了该频率影响系数与管子的振型曲线随边界条件、阶序、层合管长径比、以及壁厚比等参数的变化规律。

Abstract

Non-homogeneous, shear deformation and rotary inertia effects must be taken into account in vibration analysis of laminated metal thick-walled short tubes. Based on Timoshenko’s beam theory, the analytical expressions of the frequency and modal function of laminated metal tubes are deduced for four boundary conditions: hinged-hinged, clamped-clamped, free-free and clamped-free. The natural frequencies of copper-steel laminated tubes are solved and mode shapes are mapped by used of computer algebra system MAPLE for these four cases. The natural frequencies of three copper-steel laminated tubes with different length are also measured by method of hammer tests combined with finite element modal analysis. The theoretical solutions of the first three natural frequencies of copper-steel tubes are compared with the measured values, the maximum error of -4.56%, compared with the finite element, the maximum error of -0.76%. The frequency influence coefficients of shear deformation and rotary inertia on the laminated metal thick-walled short tubes are solved. The variations of the frequency influence coefficients and modal shapes with the boundary condition, frequency order, the aspect ratio, the non-homogeneous material parameter of laminated metal tubes are also investigated.

关键词

层合金属厚壁短管 / 剪切变形 / 转动惯量 / 频率影响系数 / 模态振型

Key words

 laminated metal thick-walled short tubes / shear deformation / rotary inertia / frequency influence coefficient / mode shape

引用本文

导出引用
郭建英1 白艳艳2. 剪切变形与转动惯量对层合金属厚壁短管振动模态的影响[J]. 振动与冲击, 2017, 36(21): 107-116
GUO Jian-ying1 BAI Yan-yan 2 . Effects of shear deformation and rotary inertia on vibration of laminated thick-walled short tubes[J]. Journal of Vibration and Shock, 2017, 36(21): 107-116

参考文献

[1]  Knezevic M, Jahedi M, Korkolis Y P, et al. Material-based design of the extrusion of bimetallic tubes [J]. Computational Materials Science, 2014, 95: 63-73.
[2]  Mroz S, Stradomski G, Dyja H, et al. Using the explosive cladding method for production of Mg-Al  bimetallic bars [J]. Archives of Civil and Mechanical Engineering, 2015, 15(2): 317-323.
[3]  Lapovok R, Ng H P, Tomus D, et al. Bimetallic copper-aluminium tube by severe plastic deformation [J]. Scripta Materialia, 2012, 66(12): 1081-1084.
[4]  Chitkara N R, Aleem A. Extrusion of axi-symmetric bi-metallic tubes: some experiments using hollow billets and the application of a generalised slab method of analysis [J]. International Journal of Mechanical Sciences, 2001, 43(12): 2857-2882.
[5]  程可,徐文斌,陆晓峰. 20/316L双金属复合管旋压成形数值模拟与分析[J]. 塑性工程学报, 2015, 22(1): 119-125.
     CHENG ke, XU Wen-bin, LU Xiao-feng. Numerical simulation and analysis on spinning of 20/316L bimetallic clad pipe [J]. Journal of Plasticity Engineering, 2015, 22(1): 119-125.
[6]  Khanna S, Sharma V, Singh S, et al. Explicit expression for temperature distribution of receiver of parabolic trough concentrator considering bimetallic absorber tube [J]. Applied Thermal Engineering, 2016, 103: 323-332.
[7]  Bouzidi S El, Hassan M, Riznic J. A comprehensive flow-induced vibration model to predict crack growth and leakage potential in steam generator tubes [J]. Nuclear Engineering and Design, 2015, 292: 17-31.
[8]  杨超,范士娟. 管材参数对输液管流固耦合振动的影响[J]. 振动与冲击, 2011, 30(7): 210-213.
YANG Chao, FAN Shi-juan. Influence of pipe parameters on fluid-structure coupled vibration of a fluid-conveying pipe [J]. Journal of Vibration and Shock, 2011, 30(7): 210-213.
[9]  罗忠,朱云鹏,韩清凯,等. 复合材料层合薄壁短圆柱壳动力学相似模型几何适用区间确定方法[J]. 机械工程学报, 2015, 51(17): 43-51.
      LUO Zhong, ZHU Yun-peng, HAN Qing-kai, et al. Structure size interval of similar test model of the laminated composite thin-wall short cylinder shell [J]. Journal of Mechanical Engineering, 2015, 51(17): 43-51.
[10]  李骁,李映辉,赵华. 轴向运动层合圆柱壳体的振动特性[J]. 力学季刊, 2016, 37(2): 266-273.
      LI Xiao, LI Ying-hui, ZHAO Hua. Vibration Characteristics of Axially Moving Laminated Cylindrical Shells [J]. Chinese Quarterly of Mechanics, 2016, 37(2): 266-273.
[11]  张宇飞,王延庆,闻邦椿. 轴向运动层合薄壁圆柱壳内共振的数值分析[J]. 振动与冲击, 2015, 34(22): 82-86.
      ZHANG Yu-fei,WANG Yan-qing,WEN Bang-chun. Internal resonance of axially moving laminated thin cylindrical shells [J]. Journal of Vibration and Shock, 2015, 34(22): 82-86.
[12]  Winfield D C, Lu C H, Mao R. Beam-type modeling for the free vibration of a long thick laminated conical tube [J]. Composites Part B: Engineering, 1997, 28, (5–6): 555-563.
[13]  曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1989.
[14]  郭建英,马腾飞,刘生宝,等. 双金属复合管的静动态力学特性[J]. 应用力学学报, 2016, 33(1): 168-174.
      GUO Jian-ying, MA Teng-fei, LIU Sheng-bao, et al. Static and dynamic mechanical characteristics of bimetallic tubes [J]. Chinese Journal of Applied Mechanics, 2016, 33(1): 168-174.
[15]  Eftekhari M, Mahzoon M, Ziaie Rad S. An evolutionary search technique to determine natural frequencies and mode shapes of composite Timoshenko beams [J]. Mechanics Research Communications, 2011, 38(3):  220-225.
[16] 楼梦麟,石树中. Timoshenko固端梁特征值问题近似计算方法[J]. 应用力学学报, 2003, 20(1): 140-143.
     LOU Meng-lin, SHI Shu-zhong. An approach for solving the eigenvalue problem of Timoshenko clamped beam [J]. Chinese Journal of Applied Mechanics, 2003, 20(1): 140-143.
[17]  Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories [J]. Journal of Sound and vibration, 1999, 225(5): 935-988.
[18]  Xu Suming, Wang Xinwei. Free vibration analyses of Timoshenko beams with free edges by using the discrete singular convolution [J]. Advances in Engineering Software, 2011, 42(10): 797-806.
[19] 金晶,邢誉峰. 铁木辛柯梁振动固有频率的边界元解法[J]. 北京航空航天大学学报, 2012, 38(7): 976-980.
     JIN Jing, XING Yu-feng. Boundary element solution method of free vibration of Timoshenko beam [J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7): 976-980.
[20]  倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.
[21]  郭建英,马腾飞,刘生宝,等. 双金属复合翅片管振动特性的研究[J]. 振动与冲击, 2016, 35(5): 201-206.
      GUO Jian-ying, MA Teng-fei, LIU Sheng-bao, et al. Vibration characteristics of bimetallic finned tube [J]. Journal of Vibration and Shock, 2016, 35(5): 201-206.
[22]  Cowper G R. The shear coefficient in Timoshenko’s beam theory [J]. Journal of Applied Mechanics,1966, 33(3): 393-398.

PDF(2424 KB)

Accesses

Citation

Detail

段落导航
相关文章

/