手性和反手性蜂窝材料的面内冲击性能研究

卢子兴,李康

振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 16-22.

PDF(3896 KB)
PDF(3896 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 16-22.
论文

手性和反手性蜂窝材料的面内冲击性能研究

  • 卢子兴,李康
作者信息 +

In-plane dynamic crushing of chiral and anti-chiral honeycombs

  • Lu Zixing,Li Kang
Author information +
文章历史 +

摘要

采用数值模拟方法,研究了具有手性和反手性构型的负泊松比蜂窝(统称手性系蜂窝)在不同冲击速度下的变形模式和能量吸收等动力学响应特性。结果表明,低速冲击下,其变形模式为连接带和圆孔的先后坍塌;高速冲击下,为圆孔和连接带交替坍塌的逐层压溃;在中等速冲击下,为兼有低速和高速模式部分特征的过渡模式;随着冲击速度的提高,局部变形区逐渐集中于冲击端。并且,在中、低速冲击时,能观察到手性系蜂窝的动态负泊松比效应。此外,数值模拟结果使我们对这类二维负泊松比多孔材料的动态力学性能和能量吸收性能有了一定的认识,同时为进一步研究三维负泊松比泡沫材料的冲击行为奠定了基础。

Abstract

The deformation modes and energy absorption properties of chiral and anti-chiral honeycombs with negative Poisson’s ratio under in-plane dynamic crushing have been studied by means of numerical simulation. The results show that deformation mode of the chiral family honeycombs at low impact velocities consists of two different stages: the first is the collapse of the ligaments and then is the collapse of the circular nodes. The deformation mode displays as the crushing of circular nodes and ligaments layer by layer at high velocities and a transitional mode with part feature of both the low and high velocities modes at moderate velocities. The localized bands transit from the fixed end to the impact end as the impact velocity increases. When the velocity is low or moderate, the chiral family honeycombs display the dynamic auxetic response. The results provide us a certain understanding of the dynamic behavior and energy absorption property of two-dimensional auxetic cellular materials and lay the foundation of the impact behavior of three-dimensional auxetic foam materials.
 

 

关键词

蜂窝 / 负泊松比 / 手性 / 动态压溃 / 变形模式

Key words

honeycomb / negative Poisson’s ratio / chiral / dynamic crushing / deformation mechanism

引用本文

导出引用
卢子兴,李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21): 16-22
Lu Zixing,Li Kang. In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock, 2017, 36(21): 16-22

参考文献

[1] Gibson L. J., Ashby M. F. Cellular Solids: Structure and Properties(2nd ed.)[M]. Cambridge: Cambridge University Press, 1997
[2] Evans K. E. Design of doubly curved sandwich panels with honeycomb cores[J]. Composite Structures, 1991, 17(2):95-111
[3] Bornengo D., Scarpa F., and Remillat C. Evaluation of hexagonal chiral structure for morphing airfoil concept[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2005, 219:185-192
[4] Hassan M. R., Scarpa F., Ruzzene M., Mohammed N. A. Smart shape memory alloy chiral honeycomb[J]. Materials Science and Engineering A, 2008, 481-482:654-657
[5] Liu Q. Literature Review: Materials with Negative Poisson's Ratios and Potential Applications to Aerospace and Defence. DSTO-GD-0472. Australia, 2006
[6] Alderson A. and Alderson K. L. Auxetic materials[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221:565-575
[7] 卢子兴, 刘强, 杨振宇. 拉胀泡沫材料力学性能[J]. 宇航材料工艺,2010,1:7-13
Lu Zixing, Liu Qiang, Yang Zhenyu. Mechanical Properties of AuxeticFoams[J]. Aerospace Materials and Technology, 2010,1:7-13
[8] Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio[J]. Composites Science and Technology, 2012, 58:140-153
[9] Prall D. and Lakes R. S. Properties of a chiral honeycomb with a Poisson’s ratio –1[J]. International Journal of Mechanical and Science, 1996, 39:305-314
[10] Alderson A., Alderson K. L., Attard D., Evans K. E., Gatt R., Grima J. N., et al. Elastic constants of 3-, 4- and 6-connected chiral and antichiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70:1042-1048
[11] Spadoni A., Ruzzene M. Elasto-static micropolar behavior of a chiral auxetic lattice[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(1):156-171
[12] Dos Reis F., Ganghoffer J. F. Equivalent mechanical properties of auxetic lattices from discrete homogenization[J]. Computational Materials Science, 2012, 51:314-321
[13] Ruan D, Lu G, Wang B, Yu T X. In-plane dynamic crushing of honeycombs― A finite element study[J].International Journal of Impact Engineering, 2003, 28(2):161―182
[14] Liu Y., Zhang X. C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]. International Journal of Impact Engineering, 2009, 36:98-109
[15] 胡玲玲, 陈依骊. 三角形蜂窝在面内冲击荷载下的力学性能[J]. 振动与冲击, 2011, 30(5):226-230Hu Lingling, Chen Yili. Mechanical properties of Triangular honeycombs under in-plane impact Loading[J]. Journal of Vibration and shock, 2011, 30(5):226-230

PDF(3896 KB)

Accesses

Citation

Detail

段落导航
相关文章

/