在双层板结构中夹层声场边界上布置平面声源作为主动声学边界,构成有源隔声双层板结构,提出基于主动声学边界方法的有源隔声双层板结构。在双层板结构中夹层边界上布置四边简支板,用来代替主动声学边界,控制力作用到该简支板上,采用声弹性理论建立了有源隔声双层板结构的计算模型,分别以辐射声功率最小和夹层声功率最小作为控制目标来优化控制力,计算分析控制前后夹层结构的传声损失以及各子系统的响应,并研究了主动声边界尺寸大小对系统隔声性能的影响。计算结果表明:主动声边界控制策略可以有效提高双层板结构的隔声性能,且以辐射声功率最小为控制目标要优于以夹层声场的声功率最小为控制目标;控制后,主动声边界对入射板振动响应几乎没有影响,辐射面板的振动动能和夹层声场的声功率均被有效地抑制;不同尺寸主动声边界都提高了夹层结构的隔声性能;对于低频率段,不同尺寸主动声边界对夹层结构的隔声性能提高的程度相同;对于其他频率段,主动声边界对传声损失和各子系统响应的影响并没有一定的规律,可以对主动声边界的尺寸进行优化设计,达到提高特定频段隔声性能的目的。
Abstract
Based on active acoustical boundary method the active double-panel sound insulation structure , which consists of the double-panel structure and the active acoustical boundary arranged on the boundary of the air gap sound field, is presented. Simply supported panels are used to replace the active acoustical boundary and are acted by control forces. Using the acoustoelsticity theory an analytical model is developed to calculate the optimal control forces with the minimum radiation sound power and the minimum air gap sound power as control target. On the basis of developed theoretical model, the sound transmission loss (STL) and responses of the subsystems of the active double-panel sound insulation structure are studied before and after control. Meanwhile, the effect of the dimensions of the active acoustical boundary on STL and responses of the subsystems are taken into account. The simulations carried out have shown that active acoustical boundary control strategy can effectively improve the sound insulation performance of double-panel structure and the better control effect can be gotten with the minimum radiation sound power than that with the minimum air gap sound power. The active acoustical boundary has no influence on the vibration response of the upper panel whilst the vibration responses of the lower panel and the air gap sound power are suppressed effectively. Different dimensions of the active acoustical boundaries can improve the sound insulation performance. Especially, in low frequency the same insulation performance is gotten for the different dimensions, but in the high frequency, the effect of the dimensions of the active acoustical boundaries on the STL and responses of the subsystems has no rules to follow, so the dimensions of the active acoustical boundaries can be optimal to improve the insulation performance for specific frequency range.
关键词
主动声学边界方法 /
声弹性理论 /
声传递损失 /
有源隔声双层板结构 /
辐射声功率
{{custom_keyword}} /
Key words
Active acoustical boundary method /
Acoustoelsticity theory /
Sound transmission loss /
Active double-panel sound insulation structure /
Radiation sound power
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杜功焕,朱哲民,龚秀芬. 声学基础[M],南京:南京大学出版社,2009.
Du G H, Zhu Z M, Gong X F. Fundamentals of Acoustics[M], Nanjing: Nanjing University Press, 2009.
[2] Xin F X, Lu T J, Chen C Q. Sound Transmission Through Simply Supported Finite Double-Panel Partitions With Enclosed Air Cavity [J]. Journal of Vibration and Acoustics, 2010, 132(1): 011008: 11001-11011.
[3] 陈克安. 有源噪声控制[M],北京:国防工业出版社,2014.
Chen K A. Active Noise Control [M], Beijing: National Defense Industry Press, 2014.
[4] Pan J, Synder S D, Hansen C H, Fuller C R. Active control of far-field sound radiated by a rectangular panela general analysis [J]. Journal of the Acoustical society of America, 1992, 91: 2056-2066.
[5] Lee J C, Chen J C. Active control of sound radiation from a rectangular plate excited by a line moment [J]. Journal of Sound and Vibration, 1999, 220(1): 99–115
[6] Pan J, Bies D A. The effect of fluid–structural coupling on sound waves in an enclosure: Theoretical part [J]. Journal of the Acoustical society of America, 1990, 87(2): 691-707.
[7] Pan J, Hansen C H, Bies D A. Active control of noise transmission through a panel into a cavity- I. Analytical study [J]. Journal of the Acoustical society of America, 1990, 87(5): 2098-2108.
[8] Kim S M, Brennan M J. Active control of harmonic sound transmission into an acoustic enclosure using both structural and acoustic actuators [J]. Journal of the Acoustical society of America, 2000, 107(5): 32523-2534.
[9] Pan J, Bao C. Analytical study of different approaches for active control of sound transmission through double walls [J]. Journal of the Acoustical society of America, 1998, 103(4): 1916-1922.
[10] Carneal J P, Fuller C R. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems [J]. Journal of Sound and vibration, 2004, 272(3-5): 749-771.
[11] 靳国永,张洪田,刘志刚,等. 基于声辐射模态的双层板声传输有源控制数值仿真和分析研究[J]. 振动工程学报,2011, 24(4): 435-443.
Jin G Y, Zhang H T, Liu Z G, et al. Numerical analysis of active control of sound transmission through a double-panel structure by using radiation modes [J]. Journal of vibration engineering, 2011, 24(4): 435-443.
[12] Li Y Y, Cheng L. Mechanisms of active control of sound transmission through a linked double-wall system into an acoustic cavity. Applied Acoustics, 2008, 69: 614–623.
[13] Pietrzko S J, Mao Q. New results in active and passive control of sound transmission through double wall structures [J]. Aerospace Science and Technology, 2008, 12(1): 42-53.
[14] Dowell E H, Gorman G G, Smith D A. Acoustoelasticity: General theory, acoustic natural modes and forced response to sinusoidal excitation, including comparisons with experiment [J]. Journal of Sound and vibration, 1977, 52(4): 519-542.
[15] 靳国永,刘志刚,杨铁军. 双层板腔结构声辐射及其有源控制研究[J]. 声学学报,2010, 35(6): 665-677.
Jin G Y, Liu Z G, Yang T J. An analytical investigation of active control of sound transmission through double panel-cavity system. ACTA Acoustic, 2010, 35(6): 665-677.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}