锚点耦合式双质量块音叉微机械陀螺的结构设计与振动分析

张亚平,刘海鹏,管延伟

振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 232-237.

PDF(1089 KB)
PDF(1089 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 232-237.
论文

锚点耦合式双质量块音叉微机械陀螺的结构设计与振动分析

  •  张亚平,刘海鹏,管延伟
作者信息 +

Design and vibration analysis of a micromachined tuning fork gyroscope with anchored coupling mechanism

  • Zhang Ya-ping, LIU Hai-peng, Guan Yan-wei
Author information +
文章历史 +

摘要

设计了锚点耦合式双质量块音叉微机械陀螺,分析了结构的模态顺序与振动灵敏度特性。所设计的结构驱动方向采用反平行杠杆机制,检测方向使用四根线弹性梁连接的锚点耦合圆环梁,实现了驱动方向和检测方向模态顺序的优化,其检测方向的同相频率比反相频率提高了30%。建立了音叉式陀螺的二阶振动微分方程,利用坐标变换法得出锚点耦合式比传统耦合式结构的反相和同相振动输出分别降低了74.8% 与 88.0%,并进行了Ansys仿真分析验证。在不牺牲陀螺灵敏度的前提下,锚点耦合式双质量块音叉微机械陀螺能够很好地实现模态优化和大幅降低振动输出误差。

Abstract

A MEMS tuning fork gyroscope with anchored coupling mechanism is designed to investigate the mode ordering and vibration sensitivity. The proposed TFG prioritizes the anti-phase drive-mode using a levered mechanism while the sense-mode is prioritized using an anchored coupling ring spring linked by four linear beams, which can improve the mode ordering. Meanwhile, the in-phase frequency of the anchored coupling TFG is improved by 30% than the anti-phase frequency in the sense direction. A two order vibration differential equation of tuning fork gyroscope is established and is solved by using the coordinate transformation method. The simulations and analytical results demonstrate that the vibration output is reduced by 74.8 and 88.0% in the anti-phase mode and in-phase mode frequencies, respectively. The anchored coupling TFG can improve the mode ordering and suppress the vibration output.

关键词

锚点耦合式 / 音叉式微机械陀螺 / 模态优化 / 振动灵敏度 / 坐标变换法

Key words

Anchored coupling mechanism / tuning fork gyroscopes / mode ordering / vibration sensitivity / Coordinate transformation method

引用本文

导出引用
张亚平,刘海鹏,管延伟. 锚点耦合式双质量块音叉微机械陀螺的结构设计与振动分析[J]. 振动与冲击, 2017, 36(21): 232-237
Zhang Ya-ping, LIU Hai-peng, Guan Yan-wei. Design and vibration analysis of a micromachined tuning fork gyroscope with anchored coupling mechanism[J]. Journal of Vibration and Shock, 2017, 36(21): 232-237

参考文献

[1]文永蓬,尚慧琳. 微陀螺动力学建模与非线性分析[J].振动与冲击, 2015, 34(4):69-74.
Wen Yong-peng, Shang Hui-lin. Dynamic modeling and nonlinear analysis for a microgyroscope[J]. Journal of vibration and shock, 2015, 34(4):69-74.
[2]曹慧亮,李宏生,王寿荣,杨波,黄丽斌. MEMS陀螺仪结构模型及系统仿真[J].中国惯性技术学报, 2013, 21(4):524-529.
Cao Hui-liang, Li Hong-sheng, Wang Shou-rong, Yang Bo, Huang Li-bin. Structure model and system simulation of MEMS gyroscope[J]. Journal of Chinese Inertial Technology, 2013, 21(4):524-529.
[3]Shkel, AM. Type I and Type II Micromachined  Vibratory  Gyroscopes. In: Proceedings Position Location and Navigation Symposium (PLANS)[C], San Diego, 2006:586–593.
[4]Prikhodko IP, Zotov SA, Trusov AA, Shkel AM. Foucault pendulum on a chip: Rate integrating silicon MEMS gyroscope[J]. Sens Actuator A: Phys, 2012, 177:67-78.
[5]Cho J, Gregory J, Najafi K. High-Q, 3 kHz single-crystal silicon cylindrical rate-integrating gyro (CING)[C]. Proceedings MEMS, Paris, 2012:172-175.
[6]Trusov AA, Schofield AR, Shkel AM. Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering[J]. Sens Actuator A: Phys, 2011, 165(1):26-34.
[7]Yoon SW, Lee S, Najafi K. Vibration-induced errors in MEMS tuning fork gyroscopes[J]. Sens Actuator A: Phys, 2012, 180:32-44.
[8]Singh TP, Sugano K, Tsuchiya T, Tabata O. Frequency response of in-plane coupled resonators for investigating the acceleration sensitivity of MEMS tuning fork gyroscopes[J]. Microsyst Technol, 2012, 18(6):797-803.
[9]Singh TP, Sugano K, Tsuchiya T, Tabata O. Experimental verification of frequency decoupling effect on acceleration sensitivity in tuning fork gyroscopes using in-plane coupled resonators[J]. Microsyst Technol, 2013, 20(3):403-411.
[10]Guan, YW, Gao, SQ, Liu, HP, Niu, SH. Acceleration sensitivity of tuning fork gyroscopes:theoretical model, simulation and experimental verification[J]. Microsyst Technol, 2015, 21(6), 1313-1323.

PDF(1089 KB)

Accesses

Citation

Detail

段落导航
相关文章

/