高温下含多条裂纹简支钢梁的模态分析

马一江1,陈国平2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 53-59.

PDF(1761 KB)
PDF(1761 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 53-59.
论文

高温下含多条裂纹简支钢梁的模态分析

  • 马一江1,陈国平2
作者信息 +

Modal analysis of the simply supported steel beam with mutiple cracks under high temperature#br#

  • MA Yijiang1  CHEN Guoping2
Author information +
文章历史 +

摘要

基于传递矩阵方法,提出了一种在高温下对含多条裂纹简支钢梁进行模态分析的方法。在模态分析过程中,用无质量的扭转弹簧来等效横向裂纹,推导出每条裂纹产生的局部柔度;通过材料力学参数的变化引入温度模块,考虑温度变化在简支梁截面产生的轴向载荷的影响,推导出含温度参数、裂纹条数和裂纹几何参数的整条裂纹梁传递矩阵。根据简支梁的边界条件,求解出不同温度下含多条裂纹简支钢梁的固有频率。结果表明:简支梁横截面上的轴向温度载荷对固有频率的影响非常大,不能忽略不计;温度的升高会显著减小裂纹简支钢梁的各阶固有频率;随着裂纹相对深度的增大,裂纹简支钢梁第一阶固有频率和临界温度均逐渐降低。

Abstract

Based on the transfer matrix method, an analytical method is proposed to conduct the modal analysis of the simply supported beam with multiple cracks under high temperature. In the modal analysis process, transverse cracks are replaced with torsion springs without mass, and local flexibility of each crack is derived; The temperature module is introduced by the change of the mechanical parameters of the structural material, and considering the axial load of the simply supported beam caused by the variation of the temperature, the transfer matrix of the whole cracked beam with the temperature parameter, the number and geometric parameters of cracks is obtained. According to boundary conditions of the simply supported beam, natural frequencies of the simply supported steel beam with multiple cracks is calculated. Results indicate that the influence of the axial temperature load on natural frequencies of the simply supported steel beam is very large, and it can not be ignored; The increase of the temperature can significantly decrease each order natural frequency of the cracked simply supported steel beam; the first order natural frequency and critical temperature of the cracked simply supported steel beam gradually decrease as the relative depth of cracks increases.

关键词

高温 / 温度载荷:多裂纹 / 简支钢梁 / 固有频率

Key words

 high temperature / temperature load / multiple cracks / simply supported steel beam / natural frequency

引用本文

导出引用
马一江1,陈国平2. 高温下含多条裂纹简支钢梁的模态分析[J]. 振动与冲击, 2017, 36(21): 53-59
MA Yijiang1 CHEN Guoping2. Modal analysis of the simply supported steel beam with mutiple cracks under high temperature#br#[J]. Journal of Vibration and Shock, 2017, 36(21): 53-59

参考文献

[1] 李清禄, 陈伟年. 面内温度载荷作用下简支梁的振动和稳定[J]. 甘肃联合大学学报:自然科学版, 2007, 21(3).
   Li Q L, Chen W N. Vibration and stability of simply supported beam subjected to temperature load[J]. Journal of Gansu Lianhe University: Natural Science Edition, 2007, 21(3). (in Chinese)
[2] 王跃兴, 谭英华, 席丰. 受火作用铝合金梁的临界温度及其参数分析[J]. 应用力学学报, 2014, 31(1):73-79.
   Wang Y X, Tan Y H, Xi F. Critical temperature and parameters analysis of the aluminum alloy beam subjected to fire load[J]. Chinese Journal of Applied Mechanics, 2014, 31(1):73-79. (in Chinese)
[3] 钱海, 周叮, 刘伟庆,等. 均匀热荷载作用下层合简支梁的弹性力学解[J]. 力学季刊, 2013, 34(2).
   Qian H, Zhou D, Liu W Q et al. Elasticity Solution of Simply Supported Laminated Beams Subjected to Uniform Thermo-Load[J]. Chinese Quarterly of Mechanics, 2013, 34(2). (in Chinese)
[4] 李小年, 陈艾荣, 马如进. 温度对桥梁模态参数的影响[J]. 华南理工大学学报:自然科学版, 2012, 40(4):138-143.
   Li X N, Chen A R, Ma R J. Influence of temperature on modal parameters of bridge[J]. Journal of South China University of Technology(Natural Science Edition), 2012, 40(4):138-143. (in Chinese)
[5] 于艳玲. 温度对结构模态频率影响研究[D]. 大连交通大学, 2010.
   Yu Y L. The research between temperature and structure modal frequency[D]. Dalian Jiaotong University, 2010. (in Chinese)
[6] 王振清, 刘兵, 韩玉来. 高温下含裂纹铝合金梁自由振动频率分析[J]. 哈尔滨工程大学学报, 2012, 33(3):320-324.
Wang Z Q, Liu B, Han Yu Lai. Free vibration frequency variation analysis of a cracked aluminum alloy beam under temperatures[J]. Journal of Harbin Engineering University, 2012, 33(3):320-324. (in Chinese)
[7] 田庆斌. 考虑温度效应的简支梁桥损伤识别方法研究[J]. 北方交通, 2014(8):4-6.
   Tian Q B. Damage Identification for Simply-supported Bridge Considering Temperature Effect[J]. Northern Communications, 2014(8):4-6. (in Chinese)
[8] 梁亚斌, 李东升, 李宏男. 环境温度影响下基于频率协整的在线损伤识别[J]. 大连理工大学学报, 2014(3):307-314.
   Liang Y B, Li D S, Li H N. Online damage detection based on cointegration of frequencies under influence of environmental temperature[J]. Journal of Dalian University of Technology, 2014(3):307-314. (in Chinese)
[9] Dimarogonas A D, Paipetis S A, Chondros T G. Analytical Methods in Rotor Dynamics[J]. Mechanisms & Machine Science, 1983, 9.
[10] 李国强,蒋首超,林桂祥。钢结构抗火计算与设计[M]。北京:中国建筑工业出版社,1999:75-98.
    Li G Q, Jiang S C, Lin G X. Calculation and design of steel structure fire resistance[M]. Beijing: China Architecture and Building Press, 1999: 75-98. (in Chinese)
[11] Meirovitch L. Elements of vibration analysis[J]. McGraw-Hill international editions, 1986.
[12] Binici B. Vibration of beams with multiple open cracks subjected to axial force[J]. Journal of Sound and Vibration, 2005, 287(1): 277-295.
[13] Dentsoras A J, Dimarogonas A D. Resonance controlled fatigue crack propagation in a beam under longitudinal vibrations[J]. International journal of fracture, 1983, 23(1): 15-22.

PDF(1761 KB)

Accesses

Citation

Detail

段落导航
相关文章

/