半空间双相压电介质垂直边界附近圆形夹杂的动态性能分析

张希萌,齐辉,丁晓浩,陈洪英

振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 77-84.

PDF(1839 KB)
PDF(1839 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 77-84.
论文

半空间双相压电介质垂直边界附近圆形夹杂的动态性能分析

  • 张希萌,齐辉,丁晓浩,陈洪英
作者信息 +

Dynamic performance analysis of circular inclusion near the vertical boundary  in the piezoelectric bi-material half -space

  • Zhangxi-meng,Qi hui, Ding Xiaohao,Chen Hong-ying
Author information +
文章历史 +

摘要

利用“Green函数法”和“镜像法”对在SH波作用下半空间双相压电介质垂直边界附近圆形夹杂的动态性能进行分析,得到其稳态响应。利用镜像法得到满足水平边界应力自由与电位移自由的波函数解析表达式。根据垂直边界连续性条件,利用“契合法”建立第一类Fredholm型积分方程组,得到圆形夹杂周边的动应力集中系数与电场强度系数解析表达式。数值算例分析了入射波频率、入射角度、圆形夹杂位置等对动应力集中系数与电场强度系数的影响,并与已有文献进行比较。

Abstract

The dynamic performance of circular inclusion near the vertical boundary in the piezoelectric bi-material half –space under SH wave is analyzed by the Green function method and mirror method to obtain the steady state response. The analytical expression of wave function which satisfies the stress free and electric displacement free on the horizontal boundaries is obtained by the mirror method. According to the continuity condition on the vertical boundary, the first kind of Fredholm integral equations are established to obtain analytical expression of dynamic stress concentration factor and electric field intensity concentration factor around the edge of  circular inclusion by the conjunction method. The influences of the frequencies of incident wave, the incident angle and the position of circular inclusion, etc. on the dynamic stress concentration factor and electric field intensity concentration factor are analyzed and compared with the existed literature in calculating example .
 

关键词

半空间 / 双相压电介质 / 圆形夹杂 / SH波 / 动应力集中系数 / 电场强度集中系数

Key words

 half space / piezoelectric bi-material / circular inclusion / SH wave / dynamic stress concentration factor (DSCF) / electric field intensity concentration factor (EFICF)

引用本文

导出引用
张希萌,齐辉,丁晓浩,陈洪英. 半空间双相压电介质垂直边界附近圆形夹杂的动态性能分析[J]. 振动与冲击, 2017, 36(21): 77-84
Zhangxi-meng,Qi hui, Ding Xiaohao,Chen Hong-ying. Dynamic performance analysis of circular inclusion near the vertical boundary  in the piezoelectric bi-material half -space[J]. Journal of Vibration and Shock, 2017, 36(21): 77-84

参考文献

[1] 舒小平. 正交压电复合材料层板各类边界的解析解[J]. 工程力学, 2013, 30(10): 288-295.
Shu Xiaoping.  Analytical  solutions of cross-ply piezoelectric composite laminates with various boundary conditions [J]. Engineering Mechanics, 2013, 30(10): 288-295. (in Chinese)
[2] 周志东,赵社戌,匡震邦.含界面刚性线夹杂与广义压电位错双压电介质的电弹性分析[J]. 固体力学学报, 2008, 29(3): 223-230.
Zhou Zhidong, Zhao Shexu,Kuang Zhenbang. Electroelastic
analysis of bi-piezoelectrics embedded interfacial rigid lines
with generalized piezoelectric dislocaton [J]. Chinese 
Journal of Solid Mechanics, 2008, 29(3): 223-230.
[3] 侯密山, 高存法. 压电材料反平面应变状态的任意形状夹杂问题[J].应用数学和力学. 1997, 14(1): 135-141
     Hou Mishan,Gao Cunfa.The antiplane strain problems for piezoelectric medium containing an arbitrary inclusion[J]. Chinese Journal of Applied Mathematics, 1997, 14(1): 135-141
[4] Shindo Y, Moribayashi H, Narita F. Scattering of antiplane shear waves by a circular piezoelectric inclusion embedded in a piezoelectric medium subjected to a steady-state electrical  load[J].ZAMM Zeitschrift  fur  Angewandte  Mathematik  und  Mechanik. 2002, 82(1): 43-49
[5] Du J.K, Shen Y.P,Wang X. Scattering of anti-plane shear  waves by a partially debonded piezoelectric circular  cylindrical inclusion[J]. Acta Mechanica. 2002, 158: 169-182
[6] Feng W, Wang L, Jiang Z, Zhao Y. Shear wave scattering from a partially debonded piezoelectric cylindrical  inclusion[J].Acta Mechanica Solida Sinica. 2004, 17(3): 258-269
[7] 宋天舒,刘殿魁,于新华. SH 波在压电材料中的散射和动应力集中[J]. 哈尔滨工程大学学报,2002,23(1): 120-123.
Song Tianshu,Liu Diankui,Yu Xinhua. Scattering of SH-Wave and dynamic stress concentration in a piezoelectric medium with a circular hole[J]. Journal of Harbin Engineering University,2002,23(1): 120-123. (in Chinese)
[8]  宋天舒,刘殿魁,付国庆. 含刚性圆柱夹杂压电介质的动力反平面特性[J].哈尔滨工程大学学报,2003,24(5):574-577.
 Song Tianshu,Liu Diankui,Fu Guoqing.Dynamic anti-plane characteristic of piezoelectric medium with rigid cylindrical inclusion. [J]. Journal of Harbin Engineering University, 2003,24(5):574-577.(in Chinese)
[9] A.HASSAN1,Tian-shu SONG.Dynamic anti-plane analysis for two symmetrically interfacial cracks near circular cavity in piezoelectric bi-materials[J]. Applied Mathematic and Mechanics,2014,35(10):1261-1270.(English Edition)
[10] 李冬,宋天舒. 双相压电介质中界面附近圆孔的动态性能分析[J]. 振动与冲击,2011,30(3): 91-95.
Li Dong,Song Tianshu. Dynamic performance analysis of  circular cavity near interface in piezoelectric biomaterials [J]. Journal of Vibration and Shock, 2011,30(3): 91-95.
 (in Chinese)
[11] Wang X D. On the dynamic behavior of interfacial cracks in piezoelectric media [J]. Int. J. Solids and Structures,2001, 38: 815-831.
[12] 林宏,刘殿魁. 半无限空间中圆形孔洞周围 SH 波的散射[J]. 地震工程与工程振动,2002, 22(2): 9-16.
Lin Hong,Liu Diankui. Scattering of SH-wave around a circular cavity in half space [J]. Journal of Earthquake Engineering and Engineering Viberation,2002, 22(2): 9-16. (in Chinese)
[13] 折勇,齐辉,杨在林. SH波对直角平面区域内圆形孔洞的散射与地震动[J]. 应用力学学报,2008, 25(3): 392-397.
Shi Yong,Qi Hui,Yang Zailin. Scattering of SH-wave by circular cavity in right-angle plane and seismic ground motion [J]. Chinese Journal of Solid Mechanics, 2008, 25(3): 392-397.

PDF(1839 KB)

Accesses

Citation

Detail

段落导航
相关文章

/