含有周期分布转动振子的声子晶体梁的弯曲振动带隙研究

朱学治1, 陈照波1,焦映厚1,杨凯2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 85-91.

PDF(1236 KB)
PDF(1236 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (21) : 85-91.
论文

含有周期分布转动振子的声子晶体梁的弯曲振动带隙研究

  • 朱学治1, 陈照波1,焦映厚1,杨凯2
作者信息 +

Flexural vibration band gaps in phononic crystal beam containing rotational resonators

  • ZHU Xuezhi 1  CHEN Zhaobo 1  JIAO Yinghou 1  YANG Kai 2
Author information +
文章历史 +

摘要

将转动振子周期布置于基体梁上形成声子晶体梁,受到外激励时,转动振子对基体梁产生动态反力矩作用。基于欧拉梁理论,采用传递矩阵法计算得到含转动振子的声子晶体梁的复能带结构。计算结果表明,转动振子可以使得声子晶体梁产生窄频带局域共振带隙和宽频带Bragg带隙。分析转动振子的转动惯量和转动刚度对带隙的调控作用,得到带隙变化的一般规律。转动刚度恒定时,减小转动惯量会拓宽局域共振带隙。转动振子频率恒定时,过大或过小的转动刚度会减小局域共振带隙带宽。同时提高转动惯量和转动刚度可以有效拓宽Bragg带隙。针对有限长的含转动振子的声子晶体梁,用谱单元法计算振动传递率,验证了含转动振子的声子晶体梁的带隙特性。该研究为声子晶体的带隙设计提供了理论依据。

Abstract

Attach rotational resonators to a host beam to form a phononic crystal beam. Complex band structure of the phononic beam containing rotational resonators was derived though Transfer Matrix Method based on Euler-Bernoulli beam theory. The results showed that narrow band locally resonant band gaps and wide band Bragg band gaps could be achieved by rotational resonators. The effects of rotational resonator parameters, such as rotational stiffness and moment of inertia on the band gaps were analyzed, and general changing law of the band gaps was obtained. Locally resonant band gap could be broadened by minimizing the moment of inertia when the rotational stiffness remains constant. Excessively large or small rotational stiffness could minimize locally resonant band gap while Bragg band gap could be broadened effectively by increasing rotational stiffness and moment of inertia simultaneously. Finally, band gaps property of the phononic crystal beam were verified though transverse vibration transmission calculation using Spectrum Element Method.
 

关键词

转动振子 / 声子晶体梁 / 弯曲振动带隙 / 传递矩阵法

Key words

 rotational resonator / phononic crystal beam / flexural vibration band gap / Transfer Matrix Method

引用本文

导出引用
朱学治1, 陈照波1,焦映厚1,杨凯2. 含有周期分布转动振子的声子晶体梁的弯曲振动带隙研究[J]. 振动与冲击, 2017, 36(21): 85-91
ZHU Xuezhi 1 CHEN Zhaobo 1 JIAO Yinghou 1 YANG Kai 2 . Flexural vibration band gaps in phononic crystal beam containing rotational resonators[J]. Journal of Vibration and Shock, 2017, 36(21): 85-91

参考文献

[1] Norton M, Karczub D. Fundamentals of Noise and  Vibration Analysis for Engineers[M]. Cambridge: Cambridge University Press, 2003.
[2] 温熙森,温激鸿,郁殿龙等. 声子晶体[M]. 北京:国防工业出版社,2009.
WENxisen,WENjihong,YUdianlong,et al.Phononic Crystals[M].Beijing:National Defence Industry Press,2009.
[3] Z. Liu. Locally Resonant Sonic Materials[J]. Science, 2000, 289(5485): 1734-1736.
[4] M.S. Kushwaha, P. Halevi, G. Martínez, et al.Theory of acoustic band structure of periodic elastic composites[J]. Physical Review B, 1994, 49(4):2313-2322.
[5] 黄丽娟,程治新,廖学兵,等. 周期局域共振蜂窝板的弯曲振动特性研究[J]. 振动与冲击,2012,31(24):108-111.
HUANG lijuan, CHENGzhixin, LIAOxuebing, et al. Flexural vibration properties of a periodic honeycomb sandwich plate[J]. Journal of Vibration and Shock, 2012,31(24):108-111.
[6] 左曙光,谭钦文,孙庆,等. 声子晶体梁在燃料电池车副车架减振中的应用研究[J]. 振动与冲击,2013,32(18):27-30.
ZUOshuguang,TANqinwen,SUNqing,et al. Vibration reduction with phononic crystals beams for subframe of a fuel-cell car[J]. Journal of Vibration and Shock, 2013,32(18):27-30.
[7] 左曙光,魏欢,何宇漾,等. 声子晶体在车身顶棚减振中的应用研究[J]. 材料导报B:研究篇,2011,25(12):124-127.
ZUOshuguang,WEIhuan,HEyuyang,et al. application research of phononic crystals to reduce body ceiling’s vibration[J].materials review,2011,25(12):124-127.
[8] 左曙光,孟姝,魏欢,等.声子晶体特性研究及在车身板件中减振降噪的应用[J]. 材料导报B:研究篇,2012,26(9):123-126.
ZUOshuguang,MENGshu,WEIhuan,et al. Properties research of phononic crystals and applications of vibration andnoise reduction with those on the body panels[J].materials review,2012,26(9):123-126.
[9] 曾广武,肖伟,程远胜. 多组声子晶体复合结构的隔声性能[J]. 振动与冲击,2013,26(1):80-83.
ZENGguangwu,XIAOwei,CHENGyuansheng. Sound isolation of composite structure consisting of multiphononic crystals[J]. Journal of Vibration and Shock, 2013,26(1):80-83.
[10] 郑玲,李以农,A Baz. 一维声子晶体的振动特性与实验研究[J]. 振动工程学报,2007,20(4):417-421.
ZHENGling,LIyinong,A Baz. Theoretical and experimental study on the characteristics of wave propagation for one dimensional phononic crystal[J].journal of vibration engineering,2007,20(4):417-421.
[11] J.O. Vasseur, P.A. Deymier, B. Chenni, et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals[J]. Physical review letters, 2001,86 (14):3012-3015.
[12] L. Munteanu, V. Chiroiu. On the dynamics of locally resonant sonic composites[J].European Journal of Mechanics - A/Solids, 2010,29 (5):871-878.
[13] Z. Liu, C.T. Chan, P. Sheng. Analytic model of phononic crystals with local resonances[J]. Physical Review B, 2005,71 (1):014103.
[14] N. Gao, J.H. Wu, L. Yu. Research on bandgaps in two-dimensional phononic crystal with two resonators[J]. Ultrasonics,2015,56:287-293.
[15] K. Yu, T. Chen, X. Wang. Large band gaps in two-dimensional phononic crystals with neck structures[J].Journal of Applied Physics,2013,113 (13) :134901.
[16] Y. Xiao, J. Wen, X. Wen. Broadband locally resonant beams containing multiple periodic arrays of attached resonators[J]. Physics Letters A, 2012, 376(16):1384-1390.
[17] D. Yu, Y. Liu, G. Wang, H. Zhao, J. Qiu. Flexural vibration band gaps in Timoshenko beams with locally resonant structures[J].Journal of Applied Physics, 2006, 100(12):124901.
[18] Y. Xiao, J. Wen, D. Yu, X. Wen. Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms[J].Journal of Sound and Vibration, 2013,332 (4): 867-893.
[19] M. Hirsekorn. Small-size sonic crystals with strong attenuation bands in the audible frequency range[J].Applied Physics Letters,2004, 84 (17):3364.
[20] 肖勇. 局域共振型结构的带隙调控与减振降噪特性研[D].长沙:国防科学技术大学,2012.
Xiaoyong. Locally Resonant Structures: Band Gap Tuning and Properties of Vibration and Noise Reduction[D].changsha: National University of Defense Technology,2012.

PDF(1236 KB)

Accesses

Citation

Detail

段落导航
相关文章

/