超临界轴向运动Timoshenko梁横向受迫振动

谭霞1, 丁虎1, 陈立群1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 1-5.

PDF(1032 KB)
PDF(1032 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 1-5.
论文

超临界轴向运动Timoshenko梁横向受迫振动

  • 谭霞1, 丁虎1, 陈立群1,2
作者信息 +

Transverse forced vibration of axially moving Timoshenko beam at a supercritical speed

  • TAN Xia1,  DING Hu1,  Chen Li-qun1,2
Author information +
文章历史 +

摘要

研究外部激励作用下,超临界轴向运动Timoshenko梁横向非线性振动的稳态响应。通过对非零平衡位形的坐标变换,从轴向运动Timoshenko梁的横向振动控制方程推导得到超临界速度下受横向外部激励的陀螺系统标准控制方程。运用Galerkin截断法数值研究超临界下轴向运动Timoshenko梁的稳态周期幅频响应关系。并通过与超临界速度下轴向运动Euler-Bernoulli梁的稳态幅频响应曲线进行对比,研究Euler-Bernoulli梁理论的适用范围。

Abstract

In this paper, the transverse nonlinear forced vibration of axially moving Timoshenko beam at a supercritical speed is studied under external excitation. In the supercritical region, the standard control equation of gyro system, which under the lateral external incentives, is derived based on the governing equation of transverse nonlinear vibration of axially moving Timoshenko beam. Moreover, the steady-state amplitude frequency response relationship of axially moving Timoshenko beam at a supercritical speed is researched by using Galerkin method. Furthermore, the effects of system parameters on the steady-state amplitude frequency response relationship of Timoshenko beam are considered. Besides, comparisons with Euler-Bernoulli (E-B) beam reveal that the resonance frequency of Timoshenko beam is much lower and the resonance amplitude is higher in the supercritical region.

 

关键词

超临界 / 轴向运动梁 / Timoshenko理论 / 受迫振动 / Galerkin截断法

Key words

Supercritical / axially moving beam / Timoshenko theory / forced vibration / Galerkin method

引用本文

导出引用
谭霞1, 丁虎1, 陈立群1,2. 超临界轴向运动Timoshenko梁横向受迫振动[J]. 振动与冲击, 2017, 36(22): 1-5
TAN Xia1, DING Hu1, Chen Li-qun1,2. Transverse forced vibration of axially moving Timoshenko beam at a supercritical speed[J]. Journal of Vibration and Shock, 2017, 36(22): 1-5

参考文献

[1] Wicket J.A., Mote C.D., Classical vibration analysis of axially moving continua [J]. ASME Journal of Applied Mechanics, 1990, 57 (3):738-744
[2] Zhu W.D., Vibration and stability of time-dependent of translating media [J]. Shock and Vibration Digest, 2000, 32 (5): 369-379
[3] Chen L.Q., Analysis and control of transverse vibration of axially moving strings [J]. ASME Applied Mechanics Reviews, 2005, 58 (2): 91-116
[4] Marynowski K, Kapitaniak T. Dynamics of axially moving continua [J]. International Journal of Mechanical Sciences,
2014;81:26–41.
[5] 宫苏梅, 张伟. 平带系统非线性振动实验研究[J]. 动力学与控制学报, 2014, 12(4): 368-372.[Gong S M, Zhang W. Experimental study on nonlinear vibration of flat-belt system[J]. Journal of dynamics and Control, 2014, 12(4): 368-372. (in Chinese).]
[6] 吕海炜, 李映辉, 李亮, 等. 轴向运动软夹层梁横向振动分析[J]. 振动与冲击, 2014, 33(2): 41-51.[Lu H W, Li Y H, Li L, et al. Analysis of transverse vibration of axially moving soft sandwich beam. Journal of vibration and shock, 2014, 33(2):41-51.(in Chinese).]
[7] 丁虎, 陈立群. 轴向运动黏弹性梁横向非线性受迫振动[J]. 振动与冲击, 2009, 28(12): 128-131.[Ding H, Chen L Q. Transverse non-linear forced vibration of axially moving viscoelastic beam[J]. Journal of Vibration and Shock, 2009, 28(12): 128-131. (in Chinese).]
[8] Ding H, Chen L Q. Natural frequencies of nonlinear vibration of axially moving beams[J]. Nonlinear Dynamics, 2011, 63(1-2): 125-134.
[9] Ghayesh M.H., Khadem S.E., Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity [J]. International Journal of Mechanical Science, 2008, 50 (3): 389-404
[10] Hwang S.J., Perkins, N.C., Supercritical stability of an axially moving beam. II. Vibration and stability analyses [J]. Journal of Sound and Vibration, 1992, 154 (3): 397-409
[11] Ding H., Chen L.Q., Galerkin methods for natural frequencies of high-speed axially moving beams [J]. Journal of Sound and Vibration, 2001329 (17): 3484-3494
[12] Tang Y.Q., Chen L.Q., Yang X.D., Non-linear vibrations of axially moving Timoshenko beams under weak and strong external excitations [J]. Journal of Sound and Vibration, 2009, 320 (4-5): 1078-1099
[13] Qiao-Yun Yan, Hu Ding, Li-Qun Chen. Nonlinear dynamics of an axially moving viscoelastic Timoshenko beam under parametric and external excitations[J].Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 971-984
[14] Ding H., Jean W. Zu., Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model[J]. Journal of Sound and Vibration, 2013, 332(24): 6472-6487
[15] Yan QY, Ding H, Chen LQ. Periodic responses and chaos behaviors of an axially accelerating viscoelastic Timoshenko beam[J]. Non-linear Dynamics, 2014;78(2):1577–1591.
[16] Chen S H, Huang JL, Sze KY. Multidimensional Lindstedt–Poincaré method for nonlinear vibration of axially moving beams[J]. Journal of Sound and Vibration, 2007, 306: 1-11.
[17] 李大鹏, 储德林, 丁虎. 轮-带驱动系统稳态周期响应谐波平衡分析[J]. 动力学与控制学报, 2015, 13(6): 423-429.[ Li D P, Chu D L, Ding H. The frequency-response curve of a belt-drive system by using the harmonic balance method[J]. Journal of Dynamics and Control, 2015, 13(6): 423-429.]

PDF(1032 KB)

623

Accesses

0

Citation

Detail

段落导航
相关文章

/