通过引入中间变量,得到了双边自由阻尼梁阻尼层杨氏模量和损耗因子的简化反演公式,并在此基础上进行误差分析,给出了高阶误差预测公式。研究表明,影响反演精度的重要参数为复合梁与基底梁的刚度比。刚度比越大,反演精度越高。当刚度比接近于1时,共振频率比和质量比的误差放大倍数急剧增加,导致反演误差变大。通过增大阻尼层与基底层的厚度比和模量比,可以增大刚度比,进而提高反演精度。仿真分析验证了这一结论。
Abstract
The inverse formulas of the symmetric free-layer beam method are simplified by introducing the medium variables. Based on the simplified formulas, a total error analysis is made and the higher order expressions for error prediction are derived. The research shows that the stiffness ratio is the most significant factor influencing the inverse accuracy. More accurate results can be obtained from specimens with bigger stiffness ratios. The errors of the frequency ratio and the mass ratio are violently magnified as the stiffness ratio reaches 1, which will lead to great inverse errors. The stiffness ratio can be increased by increasing the thickness ratio and the modulus ratio between the damping and the base layer. Thus the inverse accuracy will be improved. The conclusion is verified by the simulation analysis.
关键词
阻尼材料 /
弯曲共振法 /
双边梁 /
误差分析 /
刚度比
{{custom_keyword}} /
Key words
damping materials /
the flexural resonance method /
the symmetric free-layer beam /
the error analysis /
the stiffness ratio
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Jones D I G. Handbook of viscoelastic vibration damping[M]. Wiley, 2001: 259—262.
[2] 黄志诚,秦朝烨,褚福磊. 附加粘弹阻尼层的薄壁构件振动问题研究综述[J]. 振动与冲击, 2014, 33(7): 105―113.
Huang Zhi-cheng, Qin Zhao-ye, Zhu Fu-lei. A review about vibration problems of thin-walled structures with viscoelastic damping layer[J]. Journal of vibration and shock, 2014, 33(7): 105―113. (in Chinese)
[3] Renault A, Jaouen L, Sgard F. Characterization of elastic parameters of acoustical porous materials from beam bending vibrations[J]. Journal of Sound and Vibration, 2011, 330(9): 1950―1961.
[4] 尹邦辉,王敏庆,吴晓东. 结构振动阻尼测试的衰减法研究[J]. 振动与冲击, 2014, 33(4): 100―106.
Yin Bang-hui , Wang Min-qing , Wu Xiao-dong. Decay method for measuring structural vibration damping[J]. Journal of vibration and shock, 2014, 33(4): 100―106. (in Chinese)
[5] Pereira R, Arenas J P, Zumelzu E. Comparison of four test methods to measure damping properties of materials by using piezoelectric transducers[J]. Materials & Design, 2011, 32(4): 2423-2428.
[6] ASTM E756-05. Standard Test Method for Measuring Vibration Damping Properties of Materials[S]. American Society for Testing and Materials, 2010.
[7] GB/T 16406-1996.声学材料阻尼性能的弯曲共振测试方法[S]. 北京:国家技术监督局,1996.
GB/T 16406-1996.Flexural resonance testing method for damping properties of acoustical materials[S].Beijing:State Bureau of Technical Supervision,1996.
[8] 朱蓓丽, 沈庆元. 粘弹性材料复剪切模量的测量及误差分析[J]. 噪声与振动控制, 1999, 6: 38―41.
Zhu Bei-li, Shen Qing-yuan. Measurement of the viscoelastic material’s complex shear modulus and the error analysis[J]. Journal of Noise and Vibration Control, 1999, No.6:38--41. (in Chinese)
[9] 马少璞, 王敏庆, 胡卫强等. 对称夹层结构的共振梁法理论误差研究[J]. 噪声与振动控制, 2008, 38(4): 38―41.
MA Shao-pu,Wang Min-qing,Hu Wei-qiang, et al. Study on theoretical error of the resonance beam testing method about sandwich specimen[J]. Journal of noise and vibration control, 2008, 38(4):38-41.
[10] 胡卫强, 王敏庆, 刘志宏. 悬臂梁弯曲共振法自由阻尼结构试件设计研究[J]. 实验力学, 2008, 23(3): 241-247.
HU Wei-qiang, WANG Min-qing, LIU Zhi-hong. Study of the design of free-damping form specimen in resonance method[J]. Journal of experimental mechanics,2008,23(3):241-247.
[11] 王超, 吕振华. 粘弹性阻尼材料力学参数测试实验用双边附加自由结构阻尼试件设计方法研究[J]. 振动与冲击, 2014, 33(5): 102-108.
Wang Chao, LÜ Zhen-hua. Research on the design of specimens damped both sides used in the measurement of viscoelastic material’s mechanical parameters[J]. Journal of vibration and shock, 2014, 33(5): 101-108.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}