考虑质量偏心的阶梯梁-基础的强迫振动计算

王剑1,2, 张振果1,2, 任龙龙1,2, 华宏星1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 118-124.

PDF(1147 KB)
PDF(1147 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 118-124.
论文

考虑质量偏心的阶梯梁-基础的强迫振动计算

  • 王剑1,2, 张振果1,2, 任龙龙1,2, 华宏星1,2
作者信息 +

Forced Vibration Calculation of the Eccentric Stepped Beam-Foundation System

  • WANG Jian1, 2  ZHANG Zhen-guo1, 2  REN Long-long1, 2  HUA Hong-xing1, 2
Author information +
文章历史 +

摘要

轴系的质量非均匀会导致纵横振动的耦合,本文结合导纳综合法与改进的传递矩阵法,针对质量偏心阶梯梁-弹性基础模型,提出了一种理论/实验混合计算方法。通过与有限元计算结果对比,验证了方法的正确性。考察了质量偏心对系统响应的影响,结果表明,在垂向激励下,质量偏心对系统的垂向位移响应无影响,但是会使系统产生纵向位移响应。由于纵向位移以eθ的形式被引入弯-纵耦合振动方程,因此其频率特征与垂向响应一致,且其幅值与偏心程度成正比。

Abstract

The vibrations in vertical and longitudinal directions will couple if mass eccentricities are considered in the beam, a theoretical/experimental method focus on the vibration of eccentric stepped beam-complicated flexible foundation system is proposed combining the receptance coupling and modified transfer matrix method. The method is validated via the comparison to the results obtained by the FEM. The influence on the response of the system caused by eccentricity is investigated. Eccentricity can hardly affect the vertical response of the system, while it can induce displacement in longitudinal direction even the beam is under vertical excitation. The longitudinal vibration is introduced by the form of eθ, therefore, the associated longitudinal displacement is proportional to eccentricity and its characteristic frequencies are consistent with that of the vertical displacement.

 

关键词

质量偏心 / 阶梯梁 / 弹性基础 / 导纳综合法

Key words

mass eccentricity / stepped beam / flexible foundation / receptance coupling method

引用本文

导出引用
王剑1,2, 张振果1,2, 任龙龙1,2, 华宏星1,2. 考虑质量偏心的阶梯梁-基础的强迫振动计算[J]. 振动与冲击, 2017, 36(22): 118-124
WANG Jian1, 2 ZHANG Zhen-guo1, 2 REN Long-long1, 2 HUA Hong-xing1, 2. Forced Vibration Calculation of the Eccentric Stepped Beam-Foundation System[J]. Journal of Vibration and Shock, 2017, 36(22): 118-124

参考文献

[1] LIN H Y. Dynamic analysis of a multi-span uniform beam carrying a number of various concentrated elements[J]. Journal of Sound and Vibration, 2008, 309(1): 262-275.
[2] 崔灿, 蒋晗, 李映辉. 变截面梁横向振动特性半解析法[J]. 振动与冲击, 2012, 31(14): 85-88.
  CUI Can, JIANG Han, LI Ying-hui. Semi-analytical method for calculating vibration characteristics of variable cross-section beam[J]. Journal of vibration and shock, 2012, 31(14): 85-88.
[3] ZHANG Z, CHEN F, ZHANG Z, et al. Vibration analysis of non-uniform Timoshenko beams coupled with flexible attachments and multiple discontinuities[J]. International Journal of Mechanical Sciences, 2014, 80: 131-143.
[4] CAO M S, XU W, SU Z, et al. Local coordinate systems-based method to analyze high-order modes of n-step Timoshenko beam[J]. Journal of Vibration and Control, 2015: 1077546315573919.
[5] 王剑, 张振果, 华宏星. 考虑质量偏心 Timoshenko 梁的弯-纵耦合固有振动特性研究[J]. 振动与冲击, 2015, 34(19): 8-12.
  WANG Jian, ZHANG Zhenguo, HUA Hongxing. Flexural-longitudinal coupled natural vibration characteristics of a Timoshenko beam considering mass eccentricity[J]. Journal of Vibration and Shock, 2015, 34(19): 8-12.
[6] JUNGER M C, FEIT D. Sosund, structures, and their interaction[M]. Cambridge: MIT press, 1986.
[7] CARESTA M, KESSISSOGLOU N J. Acoustic signature of a submarine hull under harmonic excitation[J]. Applied acoustics, 2010, 71(1): 17-31.
[8] HAROLD D N. Rotordynamic Modeling and Analysis Procedures: A Review[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 1998, 41(1): 1-12.
[9] BONELLO P, BRENNAN M J. Modelling the dynamic behaviour of a supercritical rotor on a flexible foundation using the mechanical impedance technique[J]. Journal of sound and vibration, 2001, 239(3): 445-466.
[10] HONG J, SHAPOSHNIKOV K, ZHANG D, et al. Theoretical modeling for a rotor-bearing-foundation system and its dynamic characteristics analysis[C]//Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Springer International Publishing, 2015: 2199-2214.
[11] WANG Z, LUND J W. Calculations of Long Rotors With Many Bearings on a Flexible Foundation[C]//Third International Conference on Vibration in Rotating Machinery. 1984: 11-13.
[12] ZHANG Z, HUANG X, ZHANG Z, et al. On the transverse vibration of Timoshenko double-beam systems coupled with various discontinuities[J]. International Journal of Mechanical Sciences, 2014, 89: 222-241.
[13] RAO S S, YAP F F. Mechanical vibrations[M]. New York: Addison-Wesley, 1995.
[14] COWPER G R. The shear coefficient in Timoshenko’s beam theory[J]. Journal of applied mechanics, 1966, 33(2): 335-340.
[15] LEISSA A W. Vibration of shells[M]. New York: Acoustical Society of America, 1993.

PDF(1147 KB)

359

Accesses

0

Citation

Detail

段落导航
相关文章

/