基于易损性的高墩多塔斜拉桥纵向减震控制研究

胡思聪 1,李立峰 1,2,王连华 1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 149-157.

PDF(2906 KB)
PDF(2906 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 149-157.
论文

基于易损性的高墩多塔斜拉桥纵向减震控制研究

  • 胡思聪 1 ,李立峰 1,2,王连华 1,2
作者信息 +

Seismic control for multi-span cable-stayed bridge with high-piers using probability fragility method

  • HU Si-cong 1   LI Li-feng 1,2   WANG Lian-hua 1,2
Author information +
文章历史 +

摘要

为研究常用的减震控制方式在高墩多塔斜拉桥这种新型结构中的减震效果,以一座墩高178m的斜拉桥为例,建立了非线性有限元动力分析模型。从PEER强震数据库中选取80条实测地震波进行非线性时程分析;结合结构的特点,定义各关键构件的损伤指标;基于易损性分析理论,建立了关键构件及桥梁系统的易损性曲线。以铅芯橡胶支座和粘滞阻尼器为代表,通过易损性曲线对比研究了不同控制参数和布置形式下,位移型及速度型两类减震控制方式的减震效果。最后,结合桥梁实际情况确定最优的减震方案。分析结果表明:由于高墩的影响,斜拉桥的支座系统、主梁和拉索的损伤概率显著增加,而索塔损伤相对轻微;由于传力机理的差异,不同布置形式下控制参数对减震效果的影响规律不同;无论是位移型还是速度型控制方式,梁端布置形式的减震效果均优于塔梁布置形式;对于相同的布置形式,速度型控制方式较位移型控制方式效果更加显著。
 

Abstract

In order to investigate the effect of seismic control devices on multi-span cable-stayed bridges with high piers, a cable-stayed bridge with 178 meters piers was taken as a case-study and the nonlinear finite element model was built in this paper. A series of 80 ground motions were selected from the Pacific Earthquake Engineering Research Center database and the nonlinear history analysis have been conducted. The damage indexes of various components were defined according to the structure characteristic. Based on the fragility method, components and bridge system fragility curves were established respectively. The seismic control effect of Displacement-type and Velocity-type control devices, represented by the Lead Rubber Bearing (LRB) and the Viscous Fluid Damper (VFD), with different parameter and arrangement form was contrasted and investigated though fragility curves. At last, the optimal seismic control of the bridge was determined. The results show that the damage probability of bearing, deck and cables increased significantly, and ones of towers become slighter with the increase of the height of piers; Due to the different transmission mechanism of inertial force, the influence of seismic control parameter present discrepancy for different arrangement forms. The device install at the end of deck is superior to install between deck and towers. For the same arrangement form, Velocity-type control device is more effective than the Displacement-type control device.

关键词

桥梁工程 / 多塔斜拉桥 / 高墩 / 减震控制 / 易损性评估 / 铅芯橡胶支座 / 粘滞阻尼器

Key words

Bridge Engineering / Multi-span Cable-stayed bridge / high piers / seismic control / Seismic fragility assessment / Lead Rubber Bearing / Fluid Viscous Damper;

引用本文

导出引用
胡思聪 1,李立峰 1,2,王连华 1,2. 基于易损性的高墩多塔斜拉桥纵向减震控制研究[J]. 振动与冲击, 2017, 36(22): 149-157
HU Si-cong 1 LI Li-feng 1,2 WANG Lian-hua 1,2. Seismic control for multi-span cable-stayed bridge with high-piers using probability fragility method[J]. Journal of Vibration and Shock, 2017, 36(22): 149-157

参考文献

[1] 李建中,袁万城. 斜拉桥减震、耗能体系非线性纵向地震反应分析[J]. 中国公路学报, 1998, 01:73-78.
LI Jian-zhong, YUAN Wan-cheng. Nonlinear longitudinal seismic response analysis of Cable-stayed bridge systems with energy dissipation [J]. China Journal of Highway and Transport. 1998, 01:73-78.
[2] 张锴,郭文华. 大跨度斜拉桥铅芯橡胶支座的参数优化[J]. 重庆交通大学学报(自然科学版),2011,02:200-203.
ZHANG Kai, GUO Wen-hua. Parameter Optimum of Leadrubber Bearings (LRB) in the Long-span cable-stayed Bridges [J]. journal of chong qing jiao tong university (naturals cience) ,2011,02:200-203.
[3] 焦驰宇,李建中,彭天波. 塔梁连接方式对大跨斜拉桥地震反应的影响[J]. 振动与冲击,2009,10:179-184+233-234.
JIAO Chi-yu, LI Jian-zhong, PENG Tian-bo. The influence of deck-tower connection on the seismic response of long-span cable-stayed bridges. Journal of Vibration and Shock, 2009, 10: 179-184+233-234.
[4] 叶爱君,胡世德,范立础. 超大跨度斜拉桥的地震位移控制[J]. 土木工程学报,2004,12:38-43.
YE Ai-jun, HU Shi-de, FAN Li-chu. Seismic displacement control for super-long-span cable-stayed bridges[J]. China Civil Engineering Journal,2004,12:38-43.
 [5] 刘彦辉,谭平,金建敏,等. 地震作用下全浮漂大跨斜拉桥耗能减震控制研究[J]. 振动与冲击,2015,08:1-6.
LIU Yan-hui, TAN Ping, JIN Jian-min, et al. Energy dissipation control for long span cable-stayed bridges as a full-floating system under earthquake [J]. Journal of Vibration and shock, 2015, 08:1-6.
[6] 赵国栋. 斜拉桥地震反应分析与减震设计[D]. 北京交通大学,2008.
ZHAO Guo-dong. Earthquake response analysis and shock absorption design of cable-stayed bridge [D]. Beijing jiaotong university. 2008.
[7] 徐凯燕. 大跨度斜拉桥非线性地震反应时程分析及减、隔震研究[D].华南理工大学,2009.
XU Kai-yan. Nonlinear time-history analysis of seismic response and seismic control of long span cable-stayed bridges [D]. South China University of Technology. 2009.
[8] Hu S C, Li L F, Wu W P. Seismic Analysis for a NovelSuper High-pier and Multi-span Cable-Stayed Bridge in China [C]. IABSE Symposium Report. International Association for Bridge and Structural Engineering, 2015, 104(11):1-8.
[9] Choi E, DesRoches R, Nielson B. Seismic fragility of typical bridges in moderate seismic zones [J]. Engineering Structures, 2004, 26(2): 187-199.
[10] Pan Y, Agrawal A K, Ghosn M. Seismic fragility of continuous steel highway bridges in New York State [J]. Journal of Bridge Engineering, 2007, 12(6):689-699.
[11] 李立峰,吴文朋,黄佳梅,等. 地震作用下中等跨径RC连续梁桥系统易损性研究[J]. 土木工程学报,2012,10:152-160.
LI Li-feng, WU Wen-peng, HUANG Jia-mei, et al. Study on system vulnerability of medium span reinforced concrete continuous girder bridge under earthquake excitation [J]. Civil Engineering Journal, 2012, 10:152-160.
[12] Federal Emergency Management Agency-ASCE. FEMA 274 NEHRP commentary on the NEHRP guidelines for the seismic rehabilitation of buildings Federal Emergency Management Agency-ASCE, Washington, DC (1997).
[13] Manual for Menshin design of highway bridges: Ministry of Construction, Japan[M]. Earthquake Engineering Research Center, University of California, 1994.
[14] Shome N, Cornell C, Bazzurro P, et al. Earthquakes, records, and nonlinear responses. Earthquake Spectra, 1998, 14(3): 469-500
[15] Cornell C, Jalayer F, Hamburger R, et al. Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines. Journal of Structural Engineering, 2002, 128(4): 526-533
[16] HAZUS-MH MR4 Earthquake model technical manual [M]. Washington, D.C.: Federal Emergency Management Agency, 2003(7):-93.
[17] Park Y J, Ang A H S. Mechanistic seismic damage mod-el for reinforced concrete [J]. Journal of structural engineering, 1985.
[18] 陆本燕,刘伯权,刘鸣,等. 钢筋混凝土桥墩性能指标量化研究[J]. 中国公路学报,2010,06:49-57.
LU Ben-yan, LIU Bo-quan, LIU Ming, et al. Quantitative Research on Reinforced Concrete Performance Index of Reinforced Concrete Bridge Column [J]. China Journal of Highway and Transport, 2010, 06:49-57.
[19] JTG/TD 65-01-2007. 公路斜拉桥设计细则[S]. 北京:人民交通出版社,2007.
JTG/TD 65-01-2007. Guidelines for Design of Highway Cable-stayed Bridge [S]. Beijing: China. China communications press, 2007.
[20] 李雪红,李晔暄,吴迪,等. 地震动强度指标与结构地震响应的相关性研究[J]. 振动与冲击,2014,23:184-189.
LI Xue-hong,LI Ye-xuan,Wu Di,et al. Correlation between ground motion intensity and structural seismic response [J]. Journal of Vibration and shock,2014,23:184-189.
[21] 叶列平,马千里,缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动,2009,04:9-22.
YE Lie-ping, MA Qian-li, MIAO Zhi-wei. Study on eart-hquake intensities for seismic analysis of structures [J]. Journal of earthquake engineering and engineering vibration, 2009, 04:9-22.
[22] ALFREDO H S, TANG W H. Probability concepts in e-ngineering [J]. Planning, 2007, 1(4): 1.3

PDF(2906 KB)

467

Accesses

0

Citation

Detail

段落导航
相关文章

/