轴向超声振动辅助磨削的表面残余应力建模

何玉辉,唐楚,唐进元,周群

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 185-191.

PDF(1373 KB)
PDF(1373 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 185-191.
论文

轴向超声振动辅助磨削的表面残余应力建模

  • 何玉辉,唐楚,唐进元,周群
作者信息 +

Modeling on Grinding Surface Residual Stress Assisted with Axial Ultrasonic Vibration 

  • HE Yuhui, TANG chu, TANG jinyuan, ZHOU qun
Author information +
文章历史 +

摘要

以单颗磨粒为对象,分析了轴向超声振动下磨粒的运动特性。在此基础上,将磨削力分为切削变形力和摩擦力两部分,分别分析了轴向超声振动对切屑变形力和摩擦力的影响。在切削变形力方面,轴向超声振动改变了磨粒的运动方向和运动轨迹;在摩擦力方面,轴向超声振动降低了磨粒与工件间的摩擦因数。结合切向磨削力与热源强度的关系,以及温升是磨削表面残余应力产生的主要因素,建立了轴向超声振动辅助磨削的表面残余应力模型。进行轴向超声振动辅助磨削45钢的表面残余应力实验,确定了模型的常数,并验证了所建模型的正确性。

Abstract

on the base of kinematic analysis of single abrasive particle with axial ultrasonic vibration, the grinding force is simplified as the cutting resistance and the friction force. Considering for the influence of axial ultrasonic vibration on both of forces mentioned above, the moving direction and path of abrasive particles are changed and the factor deciding the friction force between abrasive particles and workpieces is shrank. This paper models axial ultrasonic grinding surface residual stress, focusing the temperature rise as the main origin of grinding surface residual stress by taking the relationship of tangential grinding force and heat strength into account. The surface residual stress of 45 steel is subjected to axial ultrasonic vibration assisted grinding, the model's parameters are determined, and the rationality of the model is verified.
 

关键词

轴向超声振动 / 残余应力建模 / 切削变形力 / 热源强度

Key words

Axial ultrasonic vibration / residual stress modeling / cutting resistance / heat source intensity

引用本文

导出引用
何玉辉,唐楚,唐进元,周群. 轴向超声振动辅助磨削的表面残余应力建模[J]. 振动与冲击, 2017, 36(22): 185-191
HE Yuhui, TANG chu, TANG jinyuan, ZHOU qun. Modeling on Grinding Surface Residual Stress Assisted with Axial Ultrasonic Vibration [J]. Journal of Vibration and Shock, 2017, 36(22): 185-191

参考文献

[1] 隈部淳一郎. 精密加工振动切削基础与应用[M]. 京: 机械工业出版社,1985.
KUMABE J. The foundation and application of precision vibration cutting[M]. Beijing:China Machine Press,1985.
[2] LIANG Z,WANG X,WU Y,et al. An investigation on wear mechanism of resin-bonded diamond wheel in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire[J]. Journal of Materials Processing Technology,2012,212(4):868-876.
[3] DING K,FU Y,SU H,et al. Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide[J]. The International Journal of Advanced Manufacturing Technology,2014,71(9-12):1929-1938.
[4]何玉辉, 周群, 郎献军. 轴向超声振动辅助磨削的磨削力研究[J]. 振动与冲击, 2016, 35(4): 170 -176.
HE Yu-hui, ZHOU qun, LANG Xian-jun. Study on Grinding Force of Axial Ultrasonic Vibration Assisted Grinding[J]. JOURNAL OF VIBRATION AND SHOCK, 2016, 35(4): 170-176.
[5]肖行志,郑侃,廖文和. 超声振动辅助磨削牙科氧化锆陶瓷切削力预测模型研究[J]. 振动与冲击, 2015, 34(12): 140-145.
XIAO Xing-zhi, ZHENG Kan, LIAO Wen-he. Research on prediction model of cutting force in ultrasonic vibration assisted grinding of zirconia ceramics[J]. JOURNAL OF VIBRATION AND SHOCK, 2015, 34(12): 140-145.
[6] FARHADI A,ABDULLAH A,ZARKOOB J,et al. Analytical and numerical simulation of ultrasonic assisted grinding[J]. American Society of Mechanical Engineers,2010:763-768 .
[7] CHOI Y,PARK K,HONG Y,et al. Effect of ultrasonic vibration in grinding; horn design and experiment[J].International Journal of Precision Engineering and Manufacturing,2013,14(11):1873-1879.
[8] 潘龙龙. 高温合金超声磨削温度的研究[D]. 沈阳:东北大学,2013.
PAN longlong. Study on ultrasonic grinding temperature of high temperature alloy[D]. Shenyang:Northeastern University,2013.
[9]姚建国, 宁欣, 王占奎. 工程陶瓷超声振动磨削残余应力特性研究[J]. 航空制造技术, 2014 (9): 83 -84.
YAO jianguo, Ning xin, WANG zhankui. Study on ultrasonic vibration grinding residue stress of engineering[J]. Aeronautical Manufacturing Technology, 2014(9):83-84.
[10]付转, 张利民, 刘建设,等. 超声振动磨削纳米氧化锆陶瓷材料的磨削力及表面残余应力的研究[J]. 金刚石与磨料磨具工程, 2012(5):57-61.
FU zhuan, ZHANG limin, LIU jianshe, et al. Sutyd on Grinding Force and Residual Stress of Nano ZrO2 Ceramics during Ultrasnic Vibration Grinding [J]. Diamond & Abrasives Engineering, 2012,32(5):57-61.
[11] ToÈnshoff, H.K., Peters, J., Inasaki, I., et al, Modeling and simulation of grinding processes[J]. CIRP Annals - Manufacturing Technology , 1992, 41 (2): 677-688.
[12] Bogdan W K, Ryszard W. Residual stress in grinding[J]. Journal of Materials Processing Technology, 2001, 109:254-257.
[13] 邓朝晖,刘改,刘禄祥等. 砂带平面磨削工件表面残余应力的研究[J]. 湖南大学学报,1995, 22 (6): 65-69.
DENG zhaohui, LIU gai, LIU luxiang, et al. Research on surface stress of wheel grinding[J]. Journal of Hunan University Natural Sciences, 1995, 22(6):65-69.
[14] 任敬心,孟庆国. 磨削残余应力的有限元计算[J]. 磨料磨具与磨削.1995(3): 31-35.
REN jingxin, MENG qingguo. Finite Element Method of grinding residual stress[J]. Abrasives and Grinding.1995(3): 31-35.
[15] 刘伟香,邓朝辉. 工程陶瓷表面残余应力的数学模型[J]. 机械设计与制造,2004,(5):49-51.
LIU weixiang, DENG zhaohui. The mathematic model of engineering ceramics surface residual stress[J]. Mechanical Design and Manufacture, 2004 (5): 49-51.
[16] HECKER R L,LIANG S Y,WU X J,et al. Grinding force and power modeling based on chip thickness
analysis[J]. The International Journal of Advanced Manufacturing Technology,2007,33(5-6):449-459.
[17]Agarwal S, Venkateswara Rao P. Predictive modeling of undeformed chip thickness in ceramic grinding [J]. International Journal of Machine Tools and Manufacture, 2012, 56(2012): 59-68.
[18] KUMAR V C,HUTCHINGS I M. Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration[J]. Tribology International,2004,37(10):833-840.
[19] 黄明军,周铁英,巫庆华. 超声振动对摩擦力的影响[J].声学学报,2000(2):115-119.
HUANG Mingjun,ZHOU Tieying,WU Qinghua. The influence of frictional force by ultrasonic vibration[J],Acta Acustica ,2000(2):115-119.
[20] TSAI C C,TSENG C H. The effect of friction reduction in the presence of in-plane vibrations[J]. Archive of Applied Mechanics,2006,75(2-3):164-176.
[21] 任敬心,华定安. 磨削原理[M]. 北京:电子工艺出版社,2011.
REN Jingxin,HUA Ting. The grinding principle [M].Beijing:Electronic Industry Press,2011
[22]李伯民, 赵波. 现代磨削技术 [M]. 北京: 机械工业出版社, 2003:12-44.
Li Bomin, Zhao Bo. Modern Grinding Technology [M]. Beijing:China Machine Press, 2003:12-44.
[23]Rowe W B. Thermal analysis of high efficiency deep grinding[J]. International Journal of Machine Tools & Manufacture, 2001, 41(1):1-19.
[24]王西彬, 李相真. 结构陶瓷磨削表面的残余应力[J]. 金刚石与磨料磨具工程, 1997(6):18-22.
WANG xibin, LI xiangzhen. Residual stress of structure ceramics’ grinding surface[J]. Diamond and Abrasives Engineering, 1997(6):18-22.
[25]郎献军. 轴向超声振动辅助磨削的磨削力建模研究[D]. 中南大学, 2014.
LANG xianjun. Research and Modeling on vibration force of axial ultrasonic assisting grinding. Central South University.

PDF(1373 KB)

422

Accesses

0

Citation

Detail

段落导航
相关文章

/