压电智能结构振动的一致性PID(CPID)控制

白亮 冯蕴雯 薛小锋

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 192-198.

PDF(2468 KB)
PDF(2468 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 192-198.
论文

压电智能结构振动的一致性PID(CPID)控制

  • 白亮 冯蕴雯 薛小锋
作者信息 +

Consensus PID (CPID) control algorithm for vibration control of piezoelectric smart structures

  • BAI Liang,FENG Yun-Wen ,XUE Xiao-Feng
Author information +
文章历史 +

摘要

将一致性控制方法和PID控制方法的基本思想相结合,提出了一种适用于压电智能结构振动控制的一致性PID(Consensus-PID,CPID)控制方法。该方法将系统输出偏差作为PID控制器的输入,PID控制器的输出及其在采样周期内的变化量作为一致性控制器的输入,致动器的输入电压为一致性控制器的输出。推导压电智能结构振动控制方程,以两边简支的压电智能梁为数值算例,建立动力学有限元模型,数值结果表明 CPID控制方法能够有效控制压电智能结构的振动,当某些传感器失效时,对比集中式PID控制,系统在CPID控制下仍然能保持较好的控制效果。

Abstract

By combining the idea of PID control and consensus control algorithm, a new consensus-PID (CPID) control algorithm has been proposed, which was used for vibration control of the piezoelectric smart structures. In this new approach, the inputs of PID controllers were the system output errors. Taking as the outputs of PID controllers and their variations in the sampling period were the inputs of the consensus controller. The input voltages of each actuator were the outputs of the consensus controller. The vibration control equations of piezoelectric smart structures were derived from the finite element dynamic equations of a linear elastic piezoelectric smart structure. The CPID control algorithm was numerically investigated for a smart structure, i.e., a piezoelectric smart beam that was simply supported at its both sides. The finite element model of a piezoelectric smart beam for vibration control was established by ANSYS. Numerical results demonstrated that the CPID control law can successfully control the vibration of the piezoelectric smart structure. Comparing with the centralized PID control algorithm, the new CPID control approach can maintain higher performance to vibration control in the system of piezoelectric smart structure, even though some sensors failed.

关键词

一致性控制 / PID控制 / 压电智能结构 / 振动控制

引用本文

导出引用
白亮 冯蕴雯 薛小锋. 压电智能结构振动的一致性PID(CPID)控制[J]. 振动与冲击, 2017, 36(22): 192-198
BAI Liang,FENG Yun-Wen,XUE Xiao-Feng. Consensus PID (CPID) control algorithm for vibration control of piezoelectric smart structures[J]. Journal of Vibration and Shock, 2017, 36(22): 192-198

参考文献

[1] Michael A. Demetriou. Design of consensus and adaptive consensus filters for distributed parameter systems [J]. Automatica, 2010, 46: 300-311.
[2] Nader Motee, Ali Jadbbaie. Optimal control of spatially distributed systems [J]. IEEE Transactions on Automatic Control, 2008, 53(7): 1616-1629.
[3] Wenying Mu, Baotong Cui, Wen Li, Zhengxian Jiang. Improving control and estimation for distributed parameter systems utilizing mobile actuator-sensor network [J]. ISA Transactions, 2014, 53: 1087-1095.
[4] A Zabilhollah, R Sedagahti, R Ganesan. Active vibration suppression of smart laminated beams using layerwise theory and an optional control strategy [J]. Smart Materials and Structures, 2007, 16: 2190-2201.
[5] Matthieu Baudry, Phillippe Micheau, Alain Berry. Decentralized harmonic active vibration control of a flexible plate using piezoelectric actuator-sensor pairs [J]. The Journal of the Acoustical Society of America, 2006, 119(1): 262-277.
[6] Seung-Bok Choi, Min-Sang Seong, Sung Hoon Ha. Accurate position control of a flexible arm using a piezoactuator associated with a hysteresis compensator [J]. Smart Materials and Structures, 2013, 22(4): 1-13.
[7] Christopher J Spruce, Judith K Turner. Tower vibration control of active stall wind turbine [J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1049-1066.
[8] M Jaensch, M U Lamperth. Investigations into the stability of a PID-controlled micropositioning and vibration attenuation system [J]. Smart Materials and Structures, 2007, 16(4): 1066-1075.
[9] Yunlong Li, Xiaojun Wang, Ren Huang, Zhiping Qiu. Active vibration and noise control of vibro-acoustic system by using PID controller [J]. Journal of Sound and Vibration, 2015, 348: 57-70.
[10] Zhang Shunqi, Rudiger Schmidt, Qin Xiansheng. Active vibration control of piezoelectric bonded smart structures using PID algorithm [J]. Chinese Journal of Aeronautics, 2015, 28(1): 305-313.
[11] E Grasso, N Totaro, H Janocha. Piezoelectric self sensing actuators for high voltage excitation [J]. Smart Materials and Structures, 2013, 22(6): 06518.
[12] Yang S M, Sheu G J, Li C C. Synthesis of reference signal in adaptive feedback controller for structure vibration suppression [J]. Journal Intelligent Material Systems and Structures, 2008, 19:727-734.
[13] Makihara Kanjuro, Kuroishi Chikako, Fukunaga Hisao. Adaptive multimodal vibration suppression using fuzzy-based control with limited structural data [J]. Smart Materials and Structures, 2013, 22(7): 075031.
[14] V Sahasrabudhe. A multiagent control system framework for smart structures [A]. AIAA[C], USA, 1998. 4202-4215.
[15] Dongmei Xie, Shaokun Wang. Consensus of second-order discrete-time multi-agent systems with fixed topology [J]. Journal of Mathematical Analysis and Applications, 2012, 387(4): 8-16.
[16] Guennam Ahmad E, Luccioni Bibiana M. Piezoelectric shell FE for the static and dynamic analysis of piezoelectric fiber composite laminates [J]. Smart Material and Structures, 2009, 9(18): 095044.
[17] H Karagulle, L Malgaca, H F Oktem. Analysis of active vibration control in smart structures by ANSYS[J]. Smart Material and Structures, 2004,13:661-667.

PDF(2468 KB)

516

Accesses

0

Citation

Detail

段落导航
相关文章

/