转捩现象对跨音速流场和气动力有一定影响,但是目前大多数颤振问题研究主要采用全湍假设,并未对转捩现象加以考虑。因此基于非定常雷诺平均N-S方程(Reynold Averaged Navier-Stockes, RANS)和 转捩模型,耦合结构运动方程,建立时域气动弹性分析方法,其中结构运动方程采用基于预估-校正技术的四阶隐式Adams线性多步法进行时域推进求解。分别对采用全湍假设和考虑转捩影响的Isogai案例A模型的跨音速颤振边界进行研究,从气动力做功的角度分析转捩对跨音速颤振特性的影响机制。结果表明转捩现象使得跨音速凹坑程度较全湍流动有所加深,凹坑范围扩大,跨音速凹坑最低点的颤振速度减小了41.6%。因此,在对表面存在转捩现象的翼型开展颤振分析时,必须在流场控制方程中添加转捩模型,从而准确分析颤振边界。
Abstract
Transition phenomenon has an impact on transonic flow filed and aerodynamic force, but most of the current researches about flutter use fully turbulent hypothesis, which have no consideration about transition phenomenon. Therefore, using unsteady Reynold Averaged Navier-Stockes (RANS) equation and transition model, as well as structure dynamic equation to establish the time domain aeroelastic analysis method. The solution in time domain is fourth order implicit Adams linear multi-step method which is based on prediction-correction method. The numerical simulations were used to analyze the transonic flutter boundary of Isogai Case A Model which was based on fully turbulent hypothesis and transition model respectively. These simulations were also made to analyze the influence mechanism of transition to flutter characters from the point of view about aerodynamic work. The results show that transition phenomenon make the transonic dip deeper and wider than fully turbulent flow. Flutter speed in the deepest position of transonic dip has decreased by 41.6%. Therefore, when flutter characters of wing which has transition on its surface is analyzed, transition model must be added into fluid equations in order to analyze flutter boundary correctly.
关键词
转捩 /
时域 /
颤振 /
全湍 /
跨音速
{{custom_keyword}} /
Key words
transition /
time domain /
flutter /
fully turbulent /
transonic
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] S. Lapointe and G. Dumas. Improved numerical simulations of self-sustained oscillations of a NACA0012 with transition modeling, AIAA-2011-3258 [R]. Hawaii: AIAA, 2011.
[2] Smith A.M.O., Gamberoni N., Transition Pressure Gradient and Stability Theory, Douglas Aircraft Company[R],Long Beach, Calif.Ref.ES 26388.1956
[3] Van Ingen, J.L.,A suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region[R],Univ. of Delft, Dept.Aerospace Engineering, Delft, The Netherlands, Rep. VTH-74,1956
[4] Langtry RB, Menter FR, Correlation-Based transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes[J],2009,AIAA J.47(12),2894-2906
[5] Menter FR, Langtry RB, Likki SR et al. Correlation-Based Transition Model Using Local Variables, Part I-Model Formulation. Proceedings of ASME Turbo Expo 2004,Power for Land , Sea, and Air.ASME:Vienna,Austria,2004;1-11 GT2004-53452
[6] Menter FR, Langtry RB, Likki SR et al. Correlation-Based Transition Model Using Local Variables, PartⅡ-Model Formulation. Proceedings of ASME Turbo Expo 2004,Power for Land, Sea, and Air.ASME:Vienna,Austria,2004;1-11 GT2004-53454
[7] Holger Mai, Anne Hebler. Aeroelasticity of a Laminar Wing.In:Pro.IFASD-2011-128
[8] A.C.L.M. van Rooij. Flutter Behaviour of a Laminar Supercritical Airfoil. A Numerical Investigation into the Influence of Boundary Layer Transition. Delft University of Technology(2012),Master Thesis.
[9] Micheal Fegrs, Anna C.L.M. van Rooij et al. Flutter Prediction in the Transonic Flight Regime with the Transition Model. WCCM XI,2014.
[10] 钱炜祺, Randolph C. K. Leung. 考虑转捩影响的翼型动态失速数值模拟[J]. 空气动力学学报, 2008, 26(1): 50-55.
QIAN Wei-qi, Randolph C. K. Leung. Numerical simulation of airfoil dynamic stall incorporating transition modeling[J]. ACTA AERODYNAMICA SINICA, 2008, 26(1): 50-55 (in Chinese).
[11] Alonso J., Jameson A. Fully-implicit time-marching aeroelastic solutions[R]. AIAA-94-0056, Washington, D.C.: AIAA, 1994.
[12] Zhichao Zhang, Shuichi Yang and Feng Liu. Prediction of Flutter anf LCO by an Euler Method on Non-Moving Cartesian Grids with Boundary-Layer Corrections[R]. AIAA-2005-833, Reno.: AIAA, 2005.
[13] 乔磊. 考虑转捩判定的分离流动数值模拟研究[D]. 西安:西北工业大学,2013.
QIAO Lei. Numerical simualtion of separation flow incorporating transition modeling[D]. Xi'an: Northwestern Polytechnical University, 2013.
[14]NLR 7301 Airfoil. Experimental data base for computer program assessment[R]. AR-138, Neuilly sur Seine, France, 1979.
[15] 叶正寅, 张伟伟, 史爱明等. 流固耦合力学基础及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2010:171-173.
YE Zheng-yin, ZHANG Wei-wei, SHI A M. Fundamentals of Fluid-Structure Coupling and Its Application. Harbin: Harbin Institute of Technology Press, 2010:171-173 (in Chinese).
[16] Koji Isogai. On the transonic-dip mechanism of flutter of a sweptback wing[J]. AIAA JOURNAL, 1979, 17(7):793-795.
[17] Koji Isogai. Transonic dip mechanism of flutter of a sweptback wing: Part Ⅱ[J]. AIAA JOURNAL, 1981, 19(9):1240-1242.
[18] Timme S. and Badcock K. J. Searching for transonic aeroelastic instability using an aerodynamic model hierarchy[R]. Technical Report Deliverable D2.3, UK: University of Liverpool, 2009.
[19] Bendiksen O. Transonic stabilization laws for unsteady aerodynamics and flutter[R]. AIAA-2012-1718, Honolulu: AIAA, 2012.
[20] Bendiksen O. Transonic single-degree-of-freedom flutter and natural mode instabilities[R]. AIAA-2013-1593, Boston: AIAA, 2013
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}