基于改进HHT和马氏距离的齿轮故障诊断

周小龙1; 刘薇娜1;姜振海2;马风雷2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 218-224.

PDF(1635 KB)
PDF(1635 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 218-224.
论文

基于改进HHT和马氏距离的齿轮故障诊断

  • 周小龙1; 刘薇娜1;姜振海2;马风雷2
作者信息 +

Gear Fault Diagnosis Based on Improved HHT and Mahalanobis Distance

  • Zhou Xiao-long1; Liu Wei-na1;Jiang Zhen-hai2;Ma Feng-lei2
Author information +
文章历史 +

摘要

针对齿轮振动信号非线性和非平稳的特点,提出一种基于改进希尔伯特-黄变换与马氏距离相结合的故障诊断方法。首先,利用自适应白噪声的完备经验模态分解将齿轮振动信号分解成一系列固有模态函数,并采用敏感固有模态函数判别算法判断出对故障信息敏感的模态函数;其次,通过对敏感固有模态分量的局部希尔伯特瞬时能量谱的分析,得出信号能量随时间变化的精确表达;最后,以不同故障信号局部希尔伯特瞬时能量谱的最大峰值作为特征向量,采用马氏距离对齿轮故障进行状态识别。试验结果表明:该方法可有效识提取齿轮故障特征,实现不同故障状态识别。

Abstract

In view of nonlinear and non-stationary characteristics of gear vibration signals, a fault diagnosis method based on improved Hilbert-Huang transform and Mahalanobis distance is proposed. The gear vibration signals are decomposed by complete ensemble empirical mode decomposition with adaptive noise, the intrinsic mode functions are obtained and sensitive intrinsic mode functions are selected by the sensitivity evaluation method. Then, the local Hilbert instantaneous energy spectrum of the sensitive intrinsic mode components is analyzed, and the fault information can be extracted form the distribution of the energy of the gear vibration signal with the change of time. Finally, the maximum peak value of the local Hilbert instantaneous energy spectrum as the fault features and using Mahalanobis distance method for judging the gear fault. Experimental results show that the method can effectively extract gear fault features and use it in different fault identification.

Key words

gear / complete ensemble empirical mode decomposition with adaptive noise / instantaneous energy spectrum / Mahalanobis distance / fault diagnosis

引用本文

导出引用
周小龙1; 刘薇娜1;姜振海2;马风雷2. 基于改进HHT和马氏距离的齿轮故障诊断[J]. 振动与冲击, 2017, 36(22): 218-224
Zhou Xiao-long1; Liu Wei-na1;Jiang Zhen-hai2;Ma Feng-lei2. Gear Fault Diagnosis Based on Improved HHT and Mahalanobis Distance[J]. Journal of Vibration and Shock, 2017, 36(22): 218-224

参考文献

[1] 于德介,程军圣,杨宇. Hilbert-Huang 变换在齿轮故障诊断中的应用[J]. 机械工程学报, 2005,41(6):102-107.
YU Jie-de,CHENG Jun-shen,YANG Yu. Application of Hilbert-Huang transform method to gear fault diagnosis[J]. Chinese Journal of Mechanical Engineering. 2005,41(6):102-107.
[2] 程军圣,杨宇,于德介. 局部均值分解方法及其在齿轮故障诊断中的应用[J]. 振动工程学报,2009,22(1):76-84.
CHENG Jun-sheng,YANG Yu,YU Jie-de. The local mean decomposition method and its application to gear fault diagnosis[J]. Journal of Vibration Engineering. 2009,22(1):76-84.
[3] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of the Royal Society of London-Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[4] Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[5] 李辉,郑海起,唐力伟. 基于EEMD 和THT 的齿轮故障诊断方法[J]. 振动、测试与诊断,2011,31(4):496-500.
Li Hui,Zheng Hai-qi,Tang Li-wei. Gear fault diagnosis method based on EEMD and THT [J]. Journal of Vibration,Measurement & Diagnosis. 2011,31(4):496-500
[6] 张超,陈建军,郭迅. 基于EEMD能量熵和支持向量机的齿轮故障诊断方法[J]. 中南大学学报(自然科学版),2012,43(3):932-939.
ZHANG Chao,CHEN Jian-jun,GUO Xun. Gear fault diagnosis method based on ensemble empirical mode decomposition energy entropy and support vector machine[J]. Journal of Central South University (Science and Technology). 2012,43(3):932-939.
[7] 吴小涛,杨锰,袁晓辉,等. 基于峭度准则EEMD及改进形态滤波方法的轴承故障诊断[J]. 振动与冲击,2015,34(2):38-44.
WU Xiao-tao, YANG Meng, YUAN Xiao-hui, et al. Bearing fault diagnosis using EEMD and improved morphological filtering method based on kurtosis criterion [J]. Journal of Vibration and Shock. 2015,34(2):38-44.
[8] Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise [C] // IEEE International Conference on Speech and Signal Processing(ICASSP), May, 22-27, 2011, Prague, Czech. 2011: 4144-4147.
[9] Colominas M A, Schlotthauer G, Torres M E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing [J]. Biomedical Signal Processing & Control, 2014, 14: 19-29.
[10] 韩庆阳,孙强,王晓东,等. CEEMDAN去噪在拉曼光谱中的应用研究[J]. 激光与光电子学进展,2015,11:113003-1-113003-7.
HAN Qing-yang,SUN Qiang,WANG Xiao-dong,et al. Application of CEEMDAN in Raman spectroscopy denoising[J]. Laser & Optoelectronics Progress. 2015,11:113003-1-113003-7.
[11] 李军,李青. 基于CEEMDAN-排列熵和泄漏积分ESN的中期电力负荷预测研究[J]. 电机与控制学报,2015,19(8):70-80.
LI Jun,LI Qing. Medium term electricity load forecasting based on CEEMDAN-permutation entropy and ESN with leaky integrator neurons[J]. Electric Machines and Control. 2015,19(8):70-80.
[12] 雷亚国. 基于Hilbert-Huang变换的机械故障诊断[J]. 机械工程学报,2011,47(5):71-77.
LEI Ya-guo. Machinery fault diagnosis based on improved Hilbert-Huang transform[J]. Journal of Mechanical Engineering. 2011,47(5):71-77.
[13] 刘昱,张俊红,毕凤荣,等. 基于LMD边际谱的柴油机气门故障诊断[J]. 内燃机学报,2014,35(6):96-100.
LIU Yu,ZHANG Jun-hong,BI Feng-rong,et al. Diesel engine valve fault diagnosis based on LMD marginal spectrum[J]. Chinese Internal Combustion Engine Engineering. 2014,35(6):96-100.
[14] 骆志高,李旭东,赵俊丽,等. 利用马氏距离判别法准确实现对裂纹的识别[J]. 振动与冲击,2013,32(21):186-188.
LUO Zhi-gao, LI Xu-dong, ZHAO Jun-li, et al. Crack identification with mahalanobis distance discrimination method [J]. Journal of Vibration and Shock. 2013,32(21):186-188.

PDF(1635 KB)

354

Accesses

0

Citation

Detail

段落导航
相关文章

/