基于变分模态分解和排列熵的滚动轴承故障诊断

郑小霞1,周国旺1,任浩翰2,符杨1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 22-28.

PDF(1328 KB)
PDF(1328 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 22-28.
论文

基于变分模态分解和排列熵的滚动轴承故障诊断

  • 郑小霞1,周国旺1,任浩翰2,符杨1
作者信息 +

Rolling Bearing Fault Diagnosis Method Based on Variational Mode Decomposition and Permutation Entropy

  •   ZHENG Xiaoxia 1   ZHOU Guowang 1  REN Haohan 2  FU Yang1
Author information +
文章历史 +

摘要

滚动轴承早期故障信号特征微弱且难以提取,为了从轴承振动信号中提取特征参数用于轴承故障诊断和识别,提出基于变分模态分解(Variational Mode Decomposition,VMD)和排列熵(Permutation Entropy, PE)的信号特征提取方法,并采用支持向量机(Support Vector Machine,SVM)进行故障识别。首先对轴承振动信号进行变分模态分解,得到不同尺度的本征模态函数;然后,计算各本征模态函数的排列熵,组成多尺度的复杂性度量特征向量;最后,将高维特征向量输入基于支持向量基建立的分类器进行故障识别分类。通过滚动轴承实验数据分析了算法中参数选取问题,将该方法应用于滚动轴承实验数据,并与集合经验模态分解和小波包分解进行对比,分析结果表明,基于变分模态分解和排列熵的诊断方法有更高的诊断准确率,能够有效实现滚动轴承的故障诊断。

Abstract

The incipient fault characteristic of rolling bearing vibration signal is weak and difficult to extract. In order to extract the characteristic parameters from the bearing vibration signal for bearing faults diagnosis, a signal characteristics extraction method based on variational mode decomposition and permutation entropy is proposed. The support vector machine is used for the fault recognition. Firstly, the bearing vibration signal is decomposed by the variational mode decomposition, and the intrinsic mode functions are obtained in different scales. Secondly, the permutation entropy of each intrinsic mode function is calculated and composed the multiscale feature vector. Finally, the high-dimensional feature vector is input to the support vector machine for the bearing fault diagnosis. The comparison is made with EEMD and WTD. The experimental results show that the proposed method can be effectively applied to diagnose rolling bearing faults.

关键词

变分模态分解 / 排列熵 / 支持向量机 / 滚动轴承 / 故障诊断

Key words

variational mode decomposition / permutation entropy / support vector machine / rolling bearing / fault diagnosis

引用本文

导出引用
郑小霞1,周国旺1,任浩翰2,符杨1. 基于变分模态分解和排列熵的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(22): 22-28
ZHENG Xiaoxia 1 ZHOU Guowang 1 REN Haohan 2 FU Yang1 . Rolling Bearing Fault Diagnosis Method Based on Variational Mode Decomposition and Permutation Entropy[J]. Journal of Vibration and Shock, 2017, 36(22): 22-28

参考文献

[1] 唐贵基, 庞彬, 刘尚坤. 基于奇异差分谱和平稳子空间分析的滚动轴承故障诊断[J]. 振动与冲击, 2015(11):83-87.
TANG Gui-ji, PANG Bin, LIU Shangkun. Fault diagnosis of rolling bearings based on difference spectrum of singular value and stationary subspace analysis [J]. Journal of Vibration & Shock, 2015, 34(11):83-87.
[2] Dragomiretskiy K, Zosso D.Variational mode decomposition [J]. IEEE Tran on Signal Processing,2014,62(3):531-544.
[3] Hang N E,Wu M,Long S R,etal. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis [J]. Proceedings of the Royal Society of London,1998: 903-995.
[4] Wang Y, Markert R, Xiang J, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system [J]. Mechanical Systems & Signal Processing, 2015, 60:243–251.
[5] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5):73-81.
TANG Gui-ji, WANG Xiao-long. Parameter Optimized Variational Mode Decomposition Method with Application to Incipient Fault Diagnosis of Rolling Bearing [J]. Journal of Xi’an Jiaotong university. 2015, 49(5):73-81.
[6] Christoph B, Bernd P. Permutation entropy: a natural complexity measure for time series [J]. Physical Review Letters, 2002, 88(17):174102.
[7] 刘永斌, 龙潜, 冯志华,等. 一种非平稳、非线性振动信号检测方法的研究[J]. 振动与冲击, 2007, 26(12):131-134.
LIU Yong-bo, LONG Qian, FENG Zhi-hua, et al. Detection Method for Nonlinear and Non-stationary Signals [J]. Journal of Vibration & Shock, 2007, 26(12):131-134.
[8] 郑近德, 程军圣, 杨宇. 基于LCD和排列熵的滚动轴承故障诊断[J]. 振动、测试与诊断, 2014, 34(5):802-806.
ZHENG Jin-de, CHANG Jun-sheng, YANG Yu. A Rolling Bearing Fault Diagnosis Method Based on LCD and Permutation Entropy [J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(5):802-806.
[9] 冯辅周, 司爱威, 饶国强,等. 基于小波相关排列熵的轴承早期故障诊断技术[J]. 机械工程学报, 2012, 48(13):73-79.
FENG Fu-zhou, et al. Early Fault Diagnosis Technology for Bearing Based on Wavelet Correlation Permutation Entropy[J]. Journal of Mechanical Engineering, 2012, 48(13):73-79.
[10] Zhang X, Liang Y, Zhou J. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM [J]. Measurement, 2015: 164-179.
[11] Frank B, Pompe B, Schneider U, et al. Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses [J]. Medical & Biological Engineering & Computing, 2006, 44(3):179-187.
[12] Yan R, Liu Y, Gao R X. Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines [J]. Mechanical Systems & Signal Processing, 2012, 29(5):474-484.
[13] Rifkin R, Klautau A. In Defense of One-Vs-All Classification[J]. Journal of Machine Learning Research, 2004, 5(1):101-141.
[14] 姜万录, 吴胜强. 基于SVM和证据理论的多数据融合故障诊断方法[J]. 仪器仪表学报, 2010, 31(8): 1738-1743.
JIANG Wan-lu., WU Sheng-qiang. Multi-data fusion fault diagnosis method based on SVM and evidence theory [J]. Chinese journal of scientific instrument, 2010, 31(8): 1738-1743.
[15] Cao Y H, Tung W W, Gao J B, et al. Detecting dynamical changes in time series using the permutation entropy [J]. Physical Review E , 2004, 70(4):174-195.

PDF(1328 KB)

Accesses

Citation

Detail

段落导航
相关文章

/