基于声压测量的结构模态参数辨识

夏茂龙1,黎胜1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 232-238.

PDF(1015 KB)
PDF(1015 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 232-238.
论文

基于声压测量的结构模态参数辨识

  • 夏茂龙1,黎胜1,2
作者信息 +

Identification of structural modal parameters based on sound pressure measurement

  • XIA Maolong1, LI Sheng1,2
Author information +
文章历史 +

摘要

通过建立辐射声压与激振力之间的声压频响函数矩阵,提出了一个基于测量声压识别振动结构模态参数的方法。该方法可以通过非接触测量声压来识别结构的固有频率、模态阻尼比与模态振型,避免了附加质量对结构的影响。声压频响函数矩阵是基于边界元和Rayleigh积分方法结合有限元结构动力学方程建立的,适用于任意结构且与结构模态参数有明确的关系。对于测量声压时多激励单输出与单激励多输出响应的不同试验模式,该方法都能识别结构的模态参数。最后以一平板结构为例,数值验证了该方法的准确性与适用性。
 

Abstract

Based on the frequency response function of sound pressure, the method of identifying structural modal parameters by measured sound pressure is proposed. It can accurately identify the structural natural frequencies, damping ratios and mode shapes with the measured sound pressure, and can avoid mass loading due to use of vibration sensors on the structure. Combined with the structural dynamic equations, the sound pressure frequency response function is established based on the boundary element method and the Rayleigh integral formulation for sound radiation from an arbitrary body. The method is also able to identify the structural modal parameters with Single-Input-Multiple-Output testing and Multiple-Input -Single-Output testing. Finally the accuracy and the validity of the method are verified on the basis of the numerical simulation experiments.
 

关键词

声压测量 / 模态参数 / 声压频响函数 / 振动声辐射

Key words

sound pressure measurement / identification of modal parameters / frequency response function of sound pressure / vibration and sound radiation

引用本文

导出引用
夏茂龙1,黎胜1,2. 基于声压测量的结构模态参数辨识[J]. 振动与冲击, 2017, 36(22): 232-238
XIA Maolong1, LI Sheng1,2 . Identification of structural modal parameters based on sound pressure measurement[J]. Journal of Vibration and Shock, 2017, 36(22): 232-238

参考文献

[1] 傅志方, 华宏星. 模态分析理论与应用[M]. 上海交通大学出版社, 2000.
[2] Ewins D J. Modal testing: theory and practice[M]. Letchworth: Research studies press, 1995.
[3] Prezelj J, Černe D, Ottowitz L, et al. Investigation on identifying structural modes by sound pressure signals[J]. e & i Elektrotechnik und Information stechnik, 2009, 126(5): 194-199.
[4] Williams E G. Regularization methods for near-field acoustical holography[J]. The Journal of the Acoustical Society of America, 2001, 110(4): 1976-1988.
[5] Maynard J D, Williams E G, Lee Y. Near field acoustic holography: I. Theory of generalized holography and the development of NAH[J]. The Journal of the Acoustical Society of America, 1985, 78(4): 1395-1413.
[6]Tournour M, Cremers L, Guisset P, et al. Inverse numerical acoustics based on acoustic transfer vectors[C]//7th International Congress on Sound and Vibration, Garmisch–Partenkirchen, Germany. 2000: 2069-1076.
[7]Prezelj J, Lipar P, Belšak A, et al. On acoustic very near field measurements[J]. Mechanical systems and signal processing, 2013, 40(1): 194-207.
[8]Zhu W D, Liu J M, Xu Y F, et al. A modal test method using sound pressure transducers based on vibro-acoustic reciprocity[J]. Journal of Sound and Vibration, 2014, 333(13): 2728-2742.
[9]Pierro E, Mucchi E, Soria L, et al. On the vibro-acoustical operational modal analysis of a helicopter cabin[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1205-1217.
[10]Boundary element acoustics: Fundamentals and computer codes[M]. Wit Pr/Computational Mechanics, 2000.
[11]Fahy F J, Gardonio P. Sound and structural vibration: radiation, transmission and response[M]. Academic press, 2007.
[12]Hamdi M A, Ville J M. Development of a sound radiation model for a finite-length duct of arbitrary shape[J]. AIAA Journal, 1982, 20(12): 1687-1692.
[13] Elwali W, Satakopan H, Shauche V, et al. Modal parameter estimation using acoustic modal analysis[M]//Structural Dynamics, Volume 3. Springer New York, 2011: 23-33.
[14]Xu Y F, Zhu W D. Operational modal analysis of a rectangular plate using non-contact excitation and measurement[J]. Journal of Sound and Vibration, 2013, 332(20): 4927-4939.
[15]Pintelon R, Schoukens J. System identification: a frequency domain approach[M]. John Wiley & Sons, 2012.
[16]Nelson P A, Yoon S H. Estimation of acoustic source strength by inverse methods: Part I, conditioning of the inverse problem[J]. Journal of sound and vibration, 2000, 233(4): 639-664.
[17]Hansen P C. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank[J]. SIAM Journal on Scientific and Statistical Computing, 1990, 11(3): 503-518.
[18]Liu W, Wu C. A predictor–corrector iterated Tikhonov regularization for linear ill-posed inverse problems[J]. Applied Mathematics and Computation, 2013, 221(1): 802-818.

PDF(1015 KB)

795

Accesses

0

Citation

Detail

段落导航
相关文章

/