半地下覆土油罐常用于储存汽油、柴油等易燃易爆油品,一旦被引燃,短时间内将产生极强的爆炸压力波,造成储罐的严重破坏并带来灾难性后果,油气爆炸冲击荷载的研究是进行储罐安全设计的基础。本文利用等比例模拟容器,基于实验对覆土立式油罐罐内油气爆炸冲击载荷特性进行了实验研究,获得了密闭条件下油罐内不同位置处的压力荷载的变化规律,油气爆炸压力荷载变化分为四个阶段:点火孕育期、加速突变期、衰弱振荡期、惯性波动期,罐顶位置处的压力荷载数值要明显大于罐壁和罐底处的压力荷载数值。进一步考察了初始油气浓度、初始点火能量、初始温度等相关参数对爆炸冲击荷载的影响规律。研究结果表明:爆炸超压随浓度的变化呈先增大后减小的规律,当初始浓度为1.71%时,爆炸超压荷载达到最大值。爆炸超压值与点火能成正比关系,与初始环境温度成反比关系。
Abstract
Semi underground oil tank is often used to store gasoline, diesel oil and other flammable and explosive oil. Strong explosion pressure wave will produced during a very short period of time once meet fire, and causes serious damage and disastrous consequences. The study of oil and gas explosion loading is the basis for safety design of tank. In this paper, the characteristics of loading of gasoline-air mixture explosion in tank are experimentally studied, and the variation of the overpressure time history at different positions was obtained. The explosion pressure loading can be divided into four stages: the ignition incubation period, the accelerated mutation period, the weak oscillation period, the inertia fluctuation period, and the overpressure at the top of the tank is significantly larger than that of the wall and the bottom. The influence of initial oil gas concentration, initial ignition energy, initial temperature and other related parameters was investigated. The results shows that: the change of overpressure increased to the max and then decreased with extending concentration , and the most dangerous concentration is 1.71%. The lower the initial temperature and the greater the ignition energy, the greater the impact load value.
关键词
半地下 /
油罐 /
油气 /
爆炸冲击荷载 /
超压值
{{custom_keyword}} /
Key words
semi underground /
vault tank /
gasoline-air mixture /
explosion loading /
overpressure value
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Molkov V M D. LES modelling of an unconfined Large-scale Hydrogen-air Deflagration[J]. Journal of Physics D-Applied Physics, 2006,18(39):4366-4376.
[2] Qiao A, Zhang S. Advanced CFD modeling on vapor dispersion and vapor cloud explosion[J]. Journal of Loss Prevention in the Process Industries, 2010,23(6):843-848.
[3] Licong Z, Yulong Z, Jingde X, et al. Numerical Simulation of Shock Wave Structure in Gas Explosion[J]. Procedia Engineering, 2011,26:1322-1329.
[4] Mahmoudi Y, Mazaheri K. High resolution numerical simulation of the structure of 2-D gaseous detonations[J]. Proceedings of the Combustion Institute, 2011,33(2):2187-2194.
[5] Angers B, Hourri A, Benard P, et al. Modeling of hydrogen explosion on a pressure swing adsorption facility[J]. International Journal of Hydrogen Energy, 2014,39(11):6210-6221.
[6] 王博, 陈思维. 密闭受限空间可燃气体爆炸特性数值模拟研究[J]. 工业安全与环保, 2008(02):28-30.
Wang Bo,Chen Siwei,et al. Numerical Simulation of Explosive Characteristics of Flammable Gas in Closed Restricted Space[J], Industrial Safety and Environmental Protection, 2008, 34(2).28-30.
[7] 张峥, 陈思维, 杜杨. 油气管道中可燃气体爆炸特性的数值模拟[J]. 管道技术与设备, 2008(05):1-2.
Zhang Zheng,Cheng Siwei,Du Yang.Numerical Simulation of Explosive Characteristics of Flammable Gas in Oil&Gas Pipeline[J] Pipeline Technique and Equipment,2008(5),1-3.
[8] Zhu C, Lin B, Jiang B, et al. Numerical simulation of blast wave oscillation effects on a premixed methane/air explosion in closed-end ducts[J]. Journal of Loss Prevention in the Process Industries, 2013,26(4):851-861.
[9] Robert A, Richard S, Colin O, et al. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine[J]. Combustion and Flame, 2015,162(7):2788-2807.
[10] Blanchard R, Arndt D, Gr Tz R, et al. Effect of ignition position on the run-up distance to DDT for hydrogen–air explosions[J]. Journal of Loss Prevention in the Process Industries, 2011,24(2):194-199.
[11] Ivanov M F, Kiverin A D, Liberman M A. Flame acceleration and DDT of hydrogen–oxygen gaseous mixtures in channels with no-slip walls[J]. International Journal of Hydrogen Energy, 2011,36(13):7714-7727.
[12] Movileanu C, Gosa V, Razus D. Explosion of gaseous ethylene–air mixtures in closed cylindrical vessels with central ignition[J]. Journal of Hazardous Materials, 2012,235–236(0):108-115.
[13] 贾宝山, 温海燕, 梁运涛, 等. 受限空间瓦斯爆炸与氢气促进机理研究[J]. 中国安全科学学报, 2012(02):81-87.
Jia Baoshan,Wen Haiyan,Liang yuntao,et al.Study on the Methane Explosion in an Enclosed Space and Hydrogen Promoting Mechanism[J].China Safety Science Journal. 2012, 22(2):81-87.
[14] Ke Hu,Yang Zhao. Numerical simulation of internal gaseous explosion loading in large-scale cylindrical tanks with fixed roof[J]. Thin-Walled Structures, 2016,(105):16-28.
[15] 刘文辉.不同工况条件对油气爆炸特性影响的实验及数值模拟研究[D]. 后勤工程学院, 2014.
[16] 邓军,田志辉,等.Mg(OH)2/CO2抑爆瓦斯实验研究[J]. 煤矿安全, 2013,44(10):4-10.
DENG Jun;TIAN Zhi-hui; et al, Experimental Research on Suppressing Gas Explosion by Mg(OH)2/CO2[J].Safety in Coal Mines .2013, 44(10):4-10.
[17] K. Cashdollar, I. Zlochower, G. Green, R. Thomas, M. Hertzberg, Flammability of methane, propane, and hydrogen gases, J. Loss Prev. Process Ind. 13 (2000)327–340.
[18] 李润之,司荣军,等. 点火能量对瓦斯爆炸压力影响的实验研究[J]. 矿业安全与环保, 2010,37(2):14-19.
Li Runzhi,Si Rongjun et al. Experimental Study on Impact of Ignition Energy on Gas Explosion Pressure[J]. Mining Safety & Environmental Protection, 2010,37(2):14-19.
[19] 周宁,耿莹,等.点火能对预混气体爆炸过程及管道薄壁加载响应的影响[J],实验力学, 2015,30(5):643-648.
Zhou ning,Geng ying,et al. On the Influence of Ignition Energy on Dynamic Response of Pipe Wall in Premixed Gas Explosion Process[J], Journal of Experimental Mechanics, 2015, 30(5):643-648.
[20] Razus D, Brinzea V,et al. Temperature and pressure influence on explosion pressures of closed vessel propane–air deflagrations [J]. Journal of Hazardous Materirals. 2010, 174:548-555
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}