薄壁管拉扭复合相变波的实验研究

王波 1,张科 1,唐志平 1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 29-33.

PDF(897 KB)
PDF(897 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 29-33.
论文

薄壁管拉扭复合相变波的实验研究

  • 王波 1 ,张科 1 ,唐志平 1
作者信息 +

Experimental study on the stress waves with phase transition under combined tension-torsion loading

  •   WANG Bo 1 ,ZHANG Ke 1 ,TANG Zhi-ping 1
Author information +
文章历史 +

摘要

为了观察相变波在复合应力加载条件下的传播特性,通过一套薄壁管预扭冲击拉伸的实验装置,对相变材料NiTi合金薄壁管进行了预扭冲击拉伸的实验研究,实验观察到了明显的拉扭耦合快波结构,证明了复合应力下相变波确实具有耦合特性,此外,实验结果还表明相变材料NiTi合金在拉扭复合应力下的相变临界点具有明显的率无关性。由于拉扭耦合慢波部分的应变变化较小,在实验波形中不易分辨,对实验过程进行了数值模拟,模拟结果和实验基本吻合,并能观察到相应的耦合慢波部分。

Abstract

In order to investigate the propagation of stress waves with phase transition under combined stress loading conditions, we applied impact tension loading on a pre-torqued thin walled tube made of NiTi alloy, which will transform its phase under stress loading. The coupling fast waves are observed, proving that the stress waves with phase transition under combined loading are coupling. Also the results show that the critical criterion for phase transition under combined stress is rate-nonsensitive. The signal of coupling slow waves is very small, so we performed a simulation, which fits well with the experiment and the coupling slow waves are distinguished.

关键词

复合应力 / 薄壁管 / 冲击拉伸 / 应力波 / 相变

Key words

combined stress / thin walled tube / impact tension / stress waves / phase transition

引用本文

导出引用
王波 1,张科 1,唐志平 1. 薄壁管拉扭复合相变波的实验研究[J]. 振动与冲击, 2017, 36(22): 29-33
WANG Bo 1,ZHANG Ke 1,TANG Zhi-ping 1 . Experimental study on the stress waves with phase transition under combined tension-torsion loading[J]. Journal of Vibration and Shock, 2017, 36(22): 29-33

参考文献

[1] 唐志平. 冲击相变[M]. 北京: 科学出版社,2008.
TANG Zhi-ping. Shock-induced Phase Transitions[M]. Beijing: Science Press, 2008.
[2] Duval G E, Graham R A. Phase-transitions under shock-wave loading[J]. Rev Mod Phys, 1977, 49(3): 523-579.
[3] 唐志平. 冲击相变研究的现状与趋势[J]. 高压物理学报, 1994: 14-22.
TANG Zhi-ping. Some topics in shock-induced phase transitions[J]. Chinese Journal of High Pressure Physics, 1994: 14-22.
[4] Chen Y C, Lagoudas D C. Wave propagation in shape memory alloy rods under impulsive loads[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 2005. 3871-3892.
[5] Berezovski A, Maugin G A. Stress-induced phase-transition front propagation in thermoelastic solids[J]. European Journal of Mechanics-A/Solids, 2005, 24(1): 1-21.
[6] Sittner P, Hara Y, Tokuda M. Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces[J]. Metallurgical and Materials Transactions A, 1995, 26(11): 2923-2935.
[7] Qidwai M A, Lagoudas D C. On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material[J]. International Journal of Plasticity, 2000, 16(10-11): 1309-1343.
[8] 郭杨波,唐志平,徐松林. 一种考虑静水压力和偏应力共同作用的相变临界准则[J].固体力学学报, 2004, 25(04): 417-422.
GUO Yang-bo, TANG Zhi-ping, XU Song-lin. A critical criterion for phase transformation considering both hydrostatic pressure and deviatoric stress effects[J]. Acta Mechanica Solida Sinica, 2004, 25(4): 417-422.
[9] Saleeb A F, Padula S A, Kumar A. A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions[J]. International Journal of Plasticity, 2011, 27(5): 655-687.
[10] Lagoudas D, Hartl D, Chemisky Y, et al. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys[J]. International Journal of Plasticity, 2012, 32-33: 155-183.
[11] Song Q, Tang Z. Combined stress waves with phase transition in thin-walled tubes[J]. Applied Mathematics and Mechanics, 2014, 35: 285-296.
[12] Wang B, Tang Z. Study on the propagation of coupling shock waves with phase transition under combined tension-torsion impact loading[J]. Sci China Phys Mech Astron, 2014, 57(10): 1977-1986.
[13] Yang S Y, Escobar J, Clifton R J. Computational modeling of stress-wave-induced martensitic phase transformations in NiTi[J]. Mathematics and Mechanics of Solids, 2009, 14(1-2): 220-257.
[14] Escobar J C, Clifton R J, Yang S Y. Stress-wave-induced martensitic phase transformations in NiTi[C]//Shock Compression of Condensed Matter-1999. AIP Publishing, 2000, 505(1): 267-270.
[15] Lipkin J, Clifton R J. Plastic waves of combined stresses due to longitudinal impact of a pretorqued tube—Part 1: Experimental results[J]. Journal of Applied Mechanics, 1970, 37(4): 1107-1112.
[16] Lipkin J, Clifton R J. Plastic waves of combined stresses due to longitudinal impact of a pretorqued tube—Part 2: comparison of theory with experiment[J]. Journal of Applied Mechanics, 1970, 37(4): 1113-1120.
[17] Hsu J C C, Clifton R J. Plastic waves in a rate sensitive material—I. Waves of uniaxial stress[J]. Journal of the Mechanics and Physics of Solids, 1974, 22(4): 233-253.
[18] Hsu J C C, Clifton R J. Plastic waves in a rate sensitive material—II. Waves of combined stress[J]. Journal of the Mechanics and Physics of Solids, 1974, 22(4): 255-266.
[19] 王波, 唐志平. 薄壁管预扭冲击拉伸实验装置的研制[J]. 实验力学, 2016, 31(3): 299-305.
WANG Bo, TANG Zhi-ping. Development of a device for impact tension of pre-torqued thin walled tube[J]. Journal of experimental mechanics, 2016, 31(3): 299-305.
 

PDF(897 KB)

271

Accesses

0

Citation

Detail

段落导航
相关文章

/