摘要
根据动态测试理论,构建基于DH5960的网络动态信号测试分析系统,开展直径为1422mm的大口径全尺寸高压气体管道爆炸试验。得到了各测点空气冲击波的P(t)曲线,经小波变换滤波后采用最小二乘法对冲击波在空间上的传播特性进行数值拟合,得到了衰减曲线和衰减公式。对比试验组和对照组的冲击波曲线,发现高压管道物理爆炸空气冲击波在近地面自由场的传播具有非圆形波阵面的特征。
Abstract
According to the theory of dynamic test, this paper presents a DH5960-based dynamic signal analysis system, in which a diameter of 1422mm full-size high-pressure gas pipeline explosion experiments are performed. Air blast each measuring point P (t) curve is obtained, after the wavelet de-noising, the least squares method is adopted to carry out numerical fitting of the peak overpressure shock wave propagation characteristics in space. Decay curves and attenuation formula is obtained. Shock curve comparison between experimental group and the control group are done to discover the feature that high-pressure pipeline physics explosion air shock has a noncircular wave front propagation characteristics on the free-field near the ground.
关键词
物理爆炸 /
小波变换去噪 /
超压衰减曲线 /
非圆形波阵面
{{custom_keyword}} /
Key words
physical explosions /
wavelet de-noising /
overpressure decay curve /
noncircular wave front
{{custom_keyword}} /
程良玉,龙源,毛益明,徐全军,纪冲,吴建源.
大口径高压管道物理爆炸冲击波传播规律的试验研究[J]. 振动与冲击, 2017, 36(22): 40-44
CHENG Liang-yu, LONG Yuan,MAO Yi-ming,XU Quan-jun,JI Chong,Wu Jian-yuan.
Experimental study on large-diameter high-pressure pipeline physical explosions shock wave propagation[J]. Journal of Vibration and Shock, 2017, 36(22): 40-44
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Stawczyk J. Experimental evaluation of LPG tank explosion hazards[J]. Journal of Hazardous Materials,2003,96 (2-3):189–200.
[2]Bariha N,Mishra IM,Srivastava VC. Hazard analysis of failure of natural gas and petroleum gas pipelines[J]. Journal of Loss Prevention in the Process Industries ,2016,40: 217-226.
[3]李伟,张奇. 高压氢气输运装置物理爆炸状态场特征及灾害效应研究[J]. 高压物理学报,2009,23(03):203-208.
LI Wei,ZHANG Qi. Study on the physical explosion character and ejection effect of the high-pressurized hydrogen transport device[J]. Chinese Journal of High Pressure Physics,2009,23(03):203-208.
[4]Skacel R,Janovsky B,Dostal L,et al. Small-scale physical explosions in shock tubes in comparison with Condensed high explosive detonations[J]. Journal of Loss Prevention in the Process Industries,2013,26:1590-1596.
[5]杜红棉,祖静,马铁华等. 自由场传感器外形结构对冲击波测试的影响研究[J]. 振动与冲击,2011,30(11):85-89.
DU Hong-mian,ZU Jing,MA Tie-hua,et al. Effect of mount configuration of free-field transducers on shock wave measurement[J]. Journal of Vibration and Shock,2011,30(11):85-89.
[6]张志镇,高峰,林斌等. 岩石冲击倾向与其波速变化的相关性研究[J]. 岩石力学与工程学报,2012,31(02):3527-3532.
ZHANG Zhi-zhen,GAO Feng,LIN Bin,et al. Correlation study of rock burst tendency and ultrasonic velocity[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(02):3527-3532
[7]邱志刚,薄景山,罗奇峰. 土壤剪切波速与埋深关系的统计分析[J]. 世界地震工程,2011,27(03):81-88.
QIU Zhi-gang,BO Jing-shan,LUO Qi-feng. Statistical analysis of relationship between shear wave velocity and depth of soil[J]. World Earthquake Engineering,2011,27(03):81-88.
[8]贾云飞,张春棋,康金. 爆炸冲击波信号测试与小波分析[J]. 弹箭与制导学报,2014,34(05):86-89.
JIA Yun-fei,ZHANG Chun-qi,KANG Jin. Shock Wave Signal Measuring and Wavelet Analysis [J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2014, 34(05):86-89.
[9]张衍芳. 冲击波信号处理方法的研究[D].太原:中北大学,2011.
[10]张德丰. MATLAB小波分析[M].北京:机械工业出版社,2009.
[11]郑哲敏,谈庆明,王补宣. 相似理论与模化[A].郑哲敏文集[C]. 北京:科学出版社,2004,777-808.
[12](俄)奥尔连科著,孙承纬译. 爆炸物理学[M]. 北京:科学出版社,2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}