摘要
为研究列车动力荷载引起的大跨度斜拉桥主梁和桥面板局部动力响应,基于车-桥耦合动力学理论建立了列车-轨道-斜拉桥空间耦合动力学模型。采用固定界面模态综合法和等效正交异性板法建立大跨度斜拉桥精细化三维有限元模型,车辆简化为具有二系悬挂的31自由度弹簧-质量模型,轮轨关系采用可分离的三维轮轨滚动接触模型。以主跨为1092m的沪通长江大桥为例,研究了轨道不平顺激励条件下高速列车行驶引起的桥面板和主桁架梁的动力响应特征及分布规律。研究结果表明:固定界面模态综合法既可以有效减少模型自由度数目,又可以反映桥梁局部动力响应;等效正交异性板法虽能较好地反映桥面板的局部振动,但由于没有考虑等效前后主梁整体刚度的一致性,故所计算的主梁振动位移偏差较大;由于桥面板局部竖向刚度较小,桥梁行车线正下方的桥面板竖向加速度远大于主梁桁架节点竖向加速度,建议我国相关铁路桥梁规范在评估大跨度板桁斜拉桥振动加速度时,考虑桥面板局部振动的影响;列车动力荷载作用下主梁桁架杆件应力冲击系数较小,动力效应不显著。
Abstract
In order to investigate the local response of main girder and steel deck induced by traveling train in long-span cable-stayed bridge,a spatial coupling dynamic modelof train,track and cable-stayed bridge was established based on the theory of vehicle-bridge coupling vibration. In the proposed method,the fixed-interface component mode synthesis method and equivalent orthotropic plate method were employed to build the fine finite element model of long-span cable-stayed bridge,the vehicle was modeled as amass-spring-damper system with a two-layer suspension system at 31degrees of freedom,and the spatialrollcontact between wheel and rail was used to simulate the wheel-rail contact relationship. Hutong Yangtze River cable-stayed bridge,the length of main span is1092m,was taken to investigate the distribution law andcharacteristics of vibrationof bridge deck and main truss girder induced byhigh speed trains. It is indicated that equivalent orthotropic plate method could well reflect the local vibration of bridge deck,but the vibration displacement of main girderhas certain deviation withoutconsidering the consistency of the overall stiffness of the main girderafter the equivalence.The vertical acceleration of deck beneath the running lane is far greater than the points in main girder truss due to the smaller localverticalstiffnessof deck.When evaluating the serviceability of long-span plate-truss cable-stayed bridge according to relevant codes of railway bridges, the influence of bridge deck vibration should be considered. The impact coefficient of the main girder truss bar stress is small under dynamic train loading,which shows thatdynamic influence is not obvious.
关键词
固定界面模态综合法 /
局部动力响应 /
大跨度斜拉桥 /
车-桥耦合振动 /
轮轨接触
{{custom_keyword}} /
Key words
Fixed-interface component mode synthesis method(FCMS) /
Local dynamic response /
Long-span cable-stayed bridge /
Train-bridge coupling vibration /
Wheel-rail contact
{{custom_keyword}} /
朱志辉1,2,程玉莹1,龚威1,蔡成标3,郭向荣1.
列车动力荷载作用下大跨度斜拉桥局部振动响应研究[J]. 振动与冲击, 2017, 36(22): 6-13
ZHU Zhi-hui1,2,CHENG Yu-ying1,GONG Wei1,Cai Cheng-biao3,GUO Xiang-rong1.
Research on local vibration of long-span cable-stayed bridgesinduced bytrain load[J]. Journal of Vibration and Shock, 2017, 36(22): 6-13
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李永乐,鲍玉龙,董世赋,等.大跨度铁路斜拉桥冲击系数的影响因素研究[J].振动与冲击,2015,34(19):138-143.
LI Yong-le,BAO Yu-long,DONG Shi-fu,et al. Influencing factors of impact coefficient for long-span railway cable-stayed bridges[J]. Journal of Vibration and Shock,2015,34(19):138-143.
[2] 高宗余.沪通长江大桥主桥技术特点[J].桥梁建设,2014,44(2):1-5.
GAO Zong-yu. Technical characteristics of main bridge of Hutong Changjiang River Bridge[J]. Bridge Construction,2014,44(2):1-5.
[3] 李永乐,夏飞龙,李龙,等.大跨度钢桁梁斜拉桥无砟轨道桥面竖向静力刚度特性[J].铁道学报,2014,36(12):79-83.
LI Yong-le,XIA Fei-long,LI Long,et al. Vertical static stiffness of ballastless tracks laid on long-span steel truss cable-stayed bridge[J]. Journal of the China Railway Society,2014,36(12):79-83.
[4] LI Y L,SU Y,XIA FL,et al. Vertical dynamic response of the ballastless track on long-spanplate-truss cable-stayed bridges [J]. Technological Sciences,2015,58:236-247.
[5] 翟婉明,夏禾.列车-轨道-桥梁动力相互作用理论与工程应用[M].北京:科学出版社,2011.
ZHAI Wan-ming,XIA He. Train-track-bridge dynamic interaction: theory and engineering application[M]. Beijing:Science Press,2011.
[6] 宋永生,丁幼亮,王高新,等.正交异性钢桥面板性能的局部构造效应[J].东南大学学报,2013,43(2):403-408.
SONG Yong-sheng,DING You-liang,WANG Gao-xin,et al. Local structural effects for fatigue performance of steel orthotropic deck [J].Journal of Southeast Jiaotong University,2013,43(2):403-408.
[7] 朱劲松,郭耀华.正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J].振动与冲击,2014,33(14):40-47+71.
ZHU Jin-song,GUO Yao-hua. Numerical simulation on fatigue crack growth of orthotropic steel highway bridge deck[J]. Journal of Vibration and Shock,2014,33(14):40-47+71.
[8] ZhangW,Cai CS,Pan F. Finite element modeling of bridges with equivalent orthotropic material method for multi-scale dynamic loads [J]. Engineering Structures,2013,54:82-93.
[9] 朱劲松,郭耀华.正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J].振动与冲击,2014,33(14):40-47+71.
ZHU Jin-song,GUO Yao-hua. Numerical simulation on fatigue crack growth of orthotropic steel highway bridge deck[J]. Journal of Vibration and Shock,2014,33(14):40-47+71.
[10] 朱志辉,王小飞,吕连兵,等.卸索期间列车-斜拉桥耦合动力响应分析[J].中国铁道科学,2015,36(5):19-27.
ZHU Zhi-hui,WANG Xiao-fei,LÜLian-bing,et al.Couplingdynamic response of train and cable-stayed bridge during cable removal[J]. China Railway Science,2015,36(5):19-27.
[11] Bruno D,Greco F,Lonetti P. Dynamic impact analysis of long span cable-stayed bridges under moving loads[J]. Engineering Structures, 2008,30(4):1160-1177.
[12] Zhang N,Xia H. Dynamic analysis of coupled vehicle–bridge system based on inter-system iteration method[J]. Computers & Structures, 2013,114-115:26-34.
[13] 张清华,崔闯,卜一之,等. 正交异性钢桥面板足尺节段疲劳模型试验研究[J].土木工程学报,2015,48(4):72-83.
ZHANG Qing-hua,CUI Chuang,BU Yi-zhi,et al. Experimental study on fatigue features of orthotropic bridge deck through full-scale segment models[J]. China Civil Engineering Journal,2015,48(4):72-83.
[14] 瞿伟廉,何杰,王文利.基于子模型法的钢桁桥整体节点动力响应分析[J].地震工程与工程振动,2009,29(3):95-100.
QU Wei-lian,HE Jie,WANG Wen-li. Dynamic stress analysis of monolithic of steel truss bridge based on submodel method[J].Journal of EarthquakeEngineering and Engineering Vibration,2009,29(3):95-100.
[15] Biondi B,Muscolino G,Sofi A. A substructure approach for the dynamic analysis of train–track–bridge system[J]. Computers & Structures,2005,83(28-30):2271-2281.
[16] Kong X, Wu D J, Cai C S,et al. New strategy of substructure method to model long-span hybrid cable-stayed bridges under vehicle-induced vibration[J]. Engineering Structures, 2012,34:421-435.
[17] 朱志辉,王力东,杨乐,等. 轨道不平顺短波分量对列车-简支梁桥耦合振动的影响[J].湖南大学学报(自然科学版),2016,43(1):53-60.
ZHU Zhi-hui,WANG Li-dong,YANG Le,et al. Effect of short-wavelength components in rail irregularity on the coupled dynamic response of train and simple-supported bridge[J]. Journal of Hunan University(Natural Science),2016,43(1):53-60.
[18] Sin C Y,Sung H H. Train-track-bridge interaction by coupling direct stiffness method and mode superposition method[J].Journal of Bridge Engineering,2016:04016058.
[19] 诸赟,张美艳,唐国安. 一种基于子结构界面动刚度的模态综合法[J].振动工程学报,2015,28(3):345-351.
ZHU Yun,ZHANG Mei-yan,TANG Guo-an. A model synthesis method based upon dynamic stiffness on interface[J]. Journal of Vibration Engineering,2015,28(3):345-351
[20] 李奇. 车辆-桥梁/轨道系统耦合振动精细分析理论及应用 [D].上海:同济大学,2008
LI Qi. Refined analysis of vehicle-bridge/track dynamic interation:theory and applications[D].Shanghai:Tongji University,2008.
[21] Li H,Xia H,Soliman M,Frangopol D M. Bridge stress calculation based on the dynamic response of coupled train–bridge system[J]. Engineering Structures,2015,99:334-345.
[22] 朱志辉,朱玉龙,余志武,等.96m钢箱系杆拱桥动力响应及行车安全性分析[J].中国铁道科学,2013,34(6):21-29.
ZHU Zhi-hui,ZHU Yu-long,YU Zhi-wu,et al. Analysis on the dynamic response and running safety of 96 m steel box tied arch bridge[J]. China Railway Science,2013,34(6):21-29.
[23] 翟婉明.车辆-轨道耦合动力学(第四版)[M].北京:科学出版社,2014.
ZHAI Wan-ming. Vehicle-track coupling dynamics(Fourth Edition )[M]. Beijing:Science Press,2014.
[24] 王孝延,吴萌岭,赵惠祥.2型高速动车组的制动力分配和可靠性建模[J].同济大学学报(自然科学版),2010,38(9):1359-1362.
WANG Xiao-yan,WU Meng-ling,ZHAO Hui-xiang. Braking force distribution of CRH2 and its reliability modeling[J]. Journal of Tongji University(Natural science),2010,38(9):1359-1362.
[25] 国家铁路局.TB10621-2014 高速铁路设计规范[S].北京:中国铁道出版社,2014.
State Railway Administration. TB10621-2014 Code for design of high speed railway[S]. Beijing:China Railway Publishing Press,2014.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}