微尺度悬臂管的空间弯曲振动—非线性运动方程及尺度效应

郭勇1,谢建华1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 65-72.

PDF(1233 KB)
PDF(1233 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 65-72.
论文

微尺度悬臂管的空间弯曲振动—非线性运动方程及尺度效应

  • 郭勇1,谢建华1
作者信息 +

Three-dimensional flexural vibration of a micro-scale cantilever pipe—Nonlinear equations of motion and scale effect

  •  Guo Yong1, Xie Jian-hua1
Author information +
文章历史 +

摘要

具有圆环形横截面的微尺度悬臂输液管可以同等地向空间各方向做弯曲振动,按照欧拉—贝努利梁理论,在分析管道上点的位移及相关几何关系的基础上,考虑Lagrange应变张量所给出的几何非线性,基于修正的偶应力理论计算了管的应变能,运用Hamilton原理建立了微尺度悬臂输液管的空间弯曲振动的非线性动力学方程。研究了无量纲材料长度尺寸参数对系统动力学性质的影响,结果表明,尺度效应增大管道的临界流速,并使得稳定的平面周期运动(空间周期运动)在整个质量比区间上占的比例越大(小)。

Abstract

Flexural vibration of a micro-scale cantilever fluid-conveying pipe with annulus cross section can occur in each direction in three-dimensional space. According to the Euler-Bernoulli beam theory, the displace components of the pipe and the relevant geometrical relations can be analyzed. The geometric nonlinearity, arising from the Lagrange strain tensor, is taken into account. Based on a modified couple stress theory, the strain energy in the pipe is calculated. The nonlinear dynamical equations of three-dimensional flexural vibration for a micro-scale cantilever fluid-conveying pipe are derived by using the Hamilton principle. The effect of the dimensionless material length scale parameter on the dynamics of the system is investigated. It is found that the scale effect increase the critical flow velocity of the pipe and that the larger the dimensionless material length scale parameter is, the wider (narrower) the region of stable planar (spatial) periodic motion is.

关键词

微尺度悬臂管 / 空间弯曲振动 / 偶应力理论 / Lagrange应变张量 / 周期运动

Key words

Micro-scale cantilever pipe / Three-dimensional flexural vibration / Couple stress theory / Lagrange strain tensor / Periodic motion

引用本文

导出引用
郭勇1,谢建华1. 微尺度悬臂管的空间弯曲振动—非线性运动方程及尺度效应[J]. 振动与冲击, 2017, 36(22): 65-72
Guo Yong1, Xie Jian-hua1. Three-dimensional flexural vibration of a micro-scale cantilever pipe—Nonlinear equations of motion and scale effect[J]. Journal of Vibration and Shock, 2017, 36(22): 65-72

参考文献

[1] Lundgren, Sethna PR, Bajaj AK. Stability boundaries for flow induced motions of tubes with an inclined terminal nozzle [J]. Journal of Sound and Vibration, 1979, 64(4): 553-571.
[2] Bajaj AK, Sethna PR. Flow induced bifurcations to three-dimensional oscillatory motions in continuous tubes [J]. Society for Industrial and Applied Mathematics, Journal of Applied Mathematics, 1984, 44(2): 270-286.
[3] Wadham-Gagnon M, Païdoussis MP, Semler C. Dynamics of cantilevered pipes conveying fluid. Part 1:Nonlinear equations of three-dimensional motion [J]. Journal of Fluids and Structures, 2007, 23: 545-567.
[4] Païdoussis MP, Ghayesh MH. Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array [J]. International Journal of Non-Linear Mechanics, 2010, 45: 507-524.
[5] Modarres-Sadeghi Y, Semler C, Wadham-Gagnon M, Païdoussis MP.Dynamics of cantilevered pipes conveying fluid. Part 3: Three-dimensional dynamics in the presence of an end-mass [J]. Journal of Fluids and Structures, 2007, 23: 589-603.
[6] Ghayesh MH, Païdoussis MP, Modarres-Sadeghi Y. Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass [J]. Journal of Sound and Vibration, 2011, 330: 2869-2899.
[7] Chang CH, Modarres-Sadeghi Y. Flow-induced oscillations of a cantilevered pipe conveying fluid with base excitation [J]. Journal of Sound and Vibration, 2014, 333: 4265-4280.
[8] Rinaldi S, Prabhakar S, Vengallatore S, Païdoussis MP. Dynamics of microscale pipes containing internal fluid flow: Damping, frequency shift, and stability [J]. Journal of Sound and Vibration, 2010, 329: 1081-1088.
[9] Najmzadeh M, Haasl S, Enoksson P. A silicon straight tube fluid density sensor [J]. Journal of Micromechanics and Microengineering, 2007, 17: 1657-1663.
[10] Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, et al. Targeted killing of cancer cells in vivo and in vitro with EGT-directed carbon nanotube-based drug delivery [J]. ACS Nano, 2009, 3: 307-316.
[11] Deladi S, Berenschot JW, Tas NR, Krijnen GJM, De Boer JH, De Boer MJ, et al. Fabrication of micromachined fountain pen with in situ characterization possibility of nanoscale surface modification [J]. Journal of Micromechanics and Microengineering, 2005, 15: 528-534.
[12] Kim KH, Moldovan N, Espinosa HD. A nano fountain probe with sub-100nm molecular writing resolution [J]. Small, 2005, 1(6): 632-635.
[13] Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity: Theory and experiment [J]. Acta Metallurgica et Materialia, 1994, 42: 475-487.
[14] Lam DCC, Yang F, Chong ACM, Wang J, Tong P. Experiments and theory in strain gradient elasticity [J]. Journal of the Mechanics and Physics of Solids, 2003, 51: 1477-1508.
[15] McFarland AW, Colton JS. Role of material microstructure in plate stiffness with relevance to microcantilever sensors [J]. Journal of Micromechanics and Microengineering, 2005, 15: 1060-1067.
[16] Yang F, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity [J]. International Journal of Solids and Structures, 2002, 39: 2731-2743.
[17] Wang YG, Lin WH, Liu N. Nonlinear free vibration of a microscale beam based on modified couple stress theory [J]. Physica E, 2013, 47: 80-85.
[18] Dai HL, Wang YK, Wang L. Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory [J]. International Journal of Engineering Science, 2015, 94: 103-112.
[19] Mohammad-Abadi M, Daneshmehr AR. Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions [J]. International Journal of Engineering Science, 2014, 74: 1-14.
[20] Ghayesh MH, Farokhi H, Alici G. Subcritical parametric dynamics of microbeams [J]. International Journal of Engineering Science, 2015, 95: 36-48.
[21] Wang L. Size-dependent vibration characteristics of fluid-conveying microtubes [J]. Journal of Fluids and Structures, 2010, 26: 675-684.
[22] Xia W, Wang L. Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory [J]. Microfluidics and Nanofluidics, 2010, 9: 955-962.
[23] Wang L, Liu HT, Ni Q, Wu Y. Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure [J]. International Journal of Engineering Science, 2013, 71: 92-101.
[24] Yang TZ, Ji SD, Yang XD, Fang B. Microfluid-induced nonlinear free vibration of microtubes [J]. International Journal of Engineering Science, 2014, 76: 47-55.
[25] Hosseini M, Bahaadini R. Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory [J]. International Journal of Engineering Science, 2016, 101: 1-13.
[26] Bahaadini R, Hosseini M. Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid [J]. Computational Materials Science, 2016, 114: 151-159.
[27] Tang M, Ni Q, Wang L, Luo YY, Wang YK. Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory [J]. International Journal of Engineering Science, 2014, 84: 1-10.

PDF(1233 KB)

412

Accesses

0

Citation

Detail

段落导航
相关文章

/