基于循环相关和LPSO算法的自适应MCKD方法的滚动轴承早期故障特征提取

陈昆弘, 刘小峰

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 80-85.

PDF(1467 KB)
PDF(1467 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 80-85.
论文

基于循环相关和LPSO算法的自适应MCKD方法的滚动轴承早期故障特征提取

  • 陈昆弘,   刘小峰
作者信息 +

Incipient Fault Diagnosis of Rolling Element Bearing Based on Adaptive Maximum Correlated Kurtosis Deconvolution

  • Liu Xiao-feng, Chen Kun-hong
Author information +
文章历史 +

摘要

针对强噪声情况下滚动轴承早期故障信号特征难以提取的问题,提出了MCKD与对称差分能量算子解调的特征提取方法。MCKD算法进行滤波时,滤波器长度L和故障周期T对滤波效果的影响至关重要,因此提出基于循环相关和LPSO算法结合的自适应的MCKD算法,自动搜寻MCKD算法所需最优参数。原信号经滤波后,故障特征被明显突出,为了剔除剩余噪声,对滤波后信号进一步做对称差分能量算子解调,剔除剩余噪声同时获得解调谱,进而提取滚动轴承的早期故障。实验分析验证了该方法的有效性。

Abstract

Aiming at the problem that the feature of incipient fault of rolling element bearing is difficult to be extracted under strong noise background, a fault diagnosis method based on MCKD and symmetrical differencing energy operator demodulation was proposed. For the filter size L and the period of interesting signal T play an important role in MCKD filtering, an adaptive MCKD filter which is based on cyclic correlation and LPSO was proposed, that can search for the best parameters automatically. The feature after filtering was outstanding, but some residual noise is still contained. To reduce the residual noise and get the demodulation spectrum, symmetrical differencing energy operator demodulation is used after filtering. The result of incipient fault diagnosis of rolling element bearing shows that this method is effective.

引用本文

导出引用
陈昆弘, 刘小峰. 基于循环相关和LPSO算法的自适应MCKD方法的滚动轴承早期故障特征提取[J]. 振动与冲击, 2017, 36(22): 80-85
Liu Xiao-feng, Chen Kun-hong. Incipient Fault Diagnosis of Rolling Element Bearing Based on Adaptive Maximum Correlated Kurtosis Deconvolution[J]. Journal of Vibration and Shock, 2017, 36(22): 80-85

参考文献

[1] 莫代一,崔玲丽,王婧.基于双重因子的稀疏分解法在滚动轴承早期故障诊断中的应用[J].机械工程学报, 2013, 49(9):37-41.
Mo Dai-yi, Cui Ling-li, Wang Jing, Sparse signal decomposition method based on the dual Q-factor and its application to rolling bearing early fault diagnosis [J]. Journal of Mechanical Engineering, 2013, 49(9):37-41.
[2] 曾庆虎,邱静,刘冠军,等.基于小波相关滤波-包络分析的早期故障特征提取方法[J].仪器仪表学报, 2008, 29(4):729-933.
Zeng Qing-hu, QIU Jing, Liu Guan-jun, et al. Approach to extraction of incipient fault features based on wavelet correlation filter and envelope analysis [J]. Chinese Journal of Scientific Instrument, 2008, 29(4):729-933.
[3] 王宏超,陈进,董广明.基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J].机械工程学报, 2013, 49(01):88-94.
Wang Hong-chao, Chen Jin, Dong Guang-ming. Fault diagnosis method for rolling bearing’s weak fault based on minimum entropy deconvolution and sparse decomposition [J]. Chinese Journal of Mechanical Engineering, 2013, 49(1):88-94.
[4] McDonald G L, Zhao Q,Zuo M J. Maximum correlated Kurtosis de-convolution and application on gear tooth chip fault detection [J]. Mechanical Systems and Signal Processing, 2012, 33:237-255.
[5] 钟先友,赵春华,陈保家,等.基于形态自相关和时频切片分析的轴承故障诊断方法[J].振动与冲击, 2014, 33(4):11-16.
Zhong Xian-you, Zhao Chun-hua, Chen Bao-jia, et al. Bearing fault diagnosis method based on morphological filtering, time-delayed autocorrelation and time-frequency slice analysis [J]. Journal of Vibration and Shock, 2014, 33(4):11-16.
[6] 唐贵基,王晓龙.自适应最大相关峭度解卷积方法及其
在轴承早期故障诊断中的应用[J].中国电机工程学报, 2015,35(6):1436-1444.
Tang Gui-ji, Wang Xiao-long. Adaptive maximum correlated kurtosis deconvolution method and its application on incipient fault diagnosis of bearing [J]. Proceedings of the CSEE, 2015, 35(6):1436-1444.
[7] 李姗姗.基于 LMD 时频分析的旋转机械故障特征提取方法研究[D].秦皇岛:燕山大学, 2013.
[8] 陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报, 2006, 40(01):53-57.
Chen Gui-min, Jia Jian-yuan, Han Qi. Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm [J]. Journal of Xi’an Jiaotong University, 2006, 40(1): 53-56.
[9] 刘国安.粒子群算法改进研究及其在图像检索中的应用[D].哈尔滨:哈尔滨工程大学,2008.
[10]彭畅.旋转机械轴承振动信号分析方法研究[D].重庆:重庆大学, 2014.
[11] Elegbede C. Structural reliability assessment based on particles swarm optimization [J].Structural Safety, 2005, 27(10):171-186.
[12] 王天金,冯志鹏,郝如江,褚福磊.基于Teager能量算子的滚动轴承故障诊断研究[J].振动与冲击, 2012, 31(2):1-5.
Wang Tian-jin, Feng Zhi-peng, Hao Ru-jiang, et al. Fault diagnosis of rolling element bearings based on Teager energy operator [J].Journal of Vibration and Shock, 2012, 31(2):1-6.
[13] 周敏,李太勇.粒子群优化算法中的惯性权值非线性调整策略[J].计算机工程, 2011, 37(5):204-206.
Zhou Min, Li Tai-yong. Nonlinear adjustment at strategy of inertia weight in particle swarm optimization algorithm [J]. Computer Engineering, 2011, 37(5):204-206.
[14] 何正嘉,訾艳阳,张西宁.现代信号处理及工程应用[M].西安交通大学出版社, 2007,10.
[15]周福昌.基于循环平稳信号处理的滚动轴承故障诊断方法研究[D].上海:上海交通大学.2006.

PDF(1467 KB)

2494

Accesses

0

Citation

Detail

段落导航
相关文章

/