基于改进尾流振子模型的柔性圆柱体涡激振动响应特性数值研究

高云1, 2,谭暖1, 熊友明1, 邹丽3, 宗智3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 86-92.

PDF(1810 KB)
PDF(1810 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (22) : 86-92.
论文

基于改进尾流振子模型的柔性圆柱体涡激振动响应特性数值研究

  • 高云1, 2 , 谭暖1, 熊友明1, 邹丽3, 宗智3
作者信息 +

Numerical study of response performance of vortex-induced vibration on a flexible cylinder using modified wake oscillator model

  • GAO Yun1, 2, TAN Nuan1, XIONG You-ming1, ZOU Li3, ZONG Zhi3
Author information +
文章历史 +

摘要

基于改进的尾流振子模型对柔性圆柱体涡激振动响应特性进行了数值研究。先分别建立了柔性圆柱体结构振子模型以及尾流振子模型,随后将二振子模型进行耦合。研究中通过改变无量纲张力、细长比以及质量比等无量纲参数,对柔性圆柱体的振幅比、相位角、频率比以及位移响应时间特性等参数进行了分析。分析结果表明:柔性圆柱体涡激振动响应特性呈现典型的行波特性,行波传播速度随着无量纲张力的增加而呈现上升趋势;行波传播速度随着细长比的增加呈下降趋势。随着无量纲张力以及细长比的增加,位移与升力之间的相位角会发生突变,突变点均发生在振动频率经过固有频率处。

Abstract

Numerical study has been conducted for the response performance of VIV of a flexible cylinder based on modified wake oscillator model. The structure oscillator model of a flexible cylinder and wake oscillator model are established, and then the two models are coupled. Parameters analyses of non-dimensional displacement, phase angle, frequency ratio and displacement fluctuation characteristics are executed by changing non-dimensional tension, aspect ratio and mass ratio. The analysis results indicate that the VIV response of a flexible cylinder has an obvious travelling wave behavior. The propagation speed increases as non-dimensional tension increases and aspect ratio decreases, respectively. The phase angle has a sudden transition with increased non-dimensional tension and aspect ratio. The sudden transition appears at the point when the vibrating frequency passes the natural frequency.
 

关键词

柔性圆柱体 / 尾流振子模型 / 数值研究 / 行波 / 相位角

Key words

Flexible cylinder / wake oscillator model / numerical study / travelling wave / phase angle

引用本文

导出引用
高云1, 2,谭暖1, 熊友明1, 邹丽3, 宗智3. 基于改进尾流振子模型的柔性圆柱体涡激振动响应特性数值研究[J]. 振动与冲击, 2017, 36(22): 86-92
GAO Yun1, 2, TAN Nuan1, XIONG You-ming1, ZOU Li3, ZONG Zhi3. Numerical study of response performance of vortex-induced vibration on a flexible cylinder using modified wake oscillator model[J]. Journal of Vibration and Shock, 2017, 36(22): 86-92

参考文献

[1] Blevins R D. Flow-induced vibration [M]. Second ed. Malabar/Florida: Krieger Publishing, Inc, 2001.
[2] 张永波, 郭海燕, 孟凡顺, 流晓春. 基于小波变换的顶张力立管涡激振动规律实验研究 [J]. 振动与冲击, 2011, 30(2): 149-154.
ZHANG Yong-bo, GUO Hai-yan, MENG Fan-shun, LIU Xiao-chun. Model tests for vortex-induced vibration of a top tension riser based on wavelet transformation [J]. Journal of Vibration and Shock, 2011, 30(2):149-154.
[3] 康庄, 贾鲁生. 圆柱体双自由度涡激振动轨迹的模型试验 [J]. 力学学报, 2012, 44(6): 970-979.
Kang Zhuang, Jia Lu-sheng. An experiment investigation on VIV trajectories of a two degree free vibration cylinder [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6):970-979.
[4] 高云, 任铁, 付世晓, 熊友明, 赵勇. 柔性立管涡激振动响应特性试验研究 [J]. 振动与冲击, 2015, 34(17): 6-11.
GAO Yun, REN Tie, FU Shi-xiao, XIONG You-ming, ZHAO Yong. Tests for response characteristics of VIV of a flexible riser [J]. Journal of Vibration and Shock, 2015, 34(17):6-11.
[5] Chen W L, Zhang Q Q, Li H, Hu H. An experimental investigation on vortex induced vibration of a flexible inclined cable under a shear flow [J]. Journal of Fluids and Structures, 2015, 54: 297-311.
[6] 唐友刚, 樊娟娟, 张杰, 王丽元, 桂龙. 高雷诺数下圆柱顺流向和横流向涡激振动分析 [J]. 振动与冲击, 2013, 32(13):88-92.
TANG You-gang, FAN Juan-juan, ZHANG Jie, WANG Li-yuan, GUI Long. In line and transverse vortex-induced vibration analysis for a circular cylinder under high Reynolds number [J]. Journal of Vibration and Shock, 2013, 32(13):88-92.
[7] Zhang H, Fan C F, Chen Z H, Li H Z, Li B M. An in-depth study on vortex-induced vibration of a circular cylinder with shear flow [J]. Computers and Fluids, 2014: 100: 30-44.
[8] Zhao M, Cheng L, An H W, Lu L. Three-dimensional numerical simulation of vortex-induced vibration of a elastically mounted rigid circular cylinder in steady current [J]. Journal of Fluids and Structures, 2014, 50: 292-311.
[9] Griffin O M. Vortex-excited cross-flow vibrations of a single cylindrical tube [J]. Journal of Pressure Vessel Technology, 1980,102:158-166.
[10] Basu R I, Vickery B J. Across-wind vibrations of structures of circular cross-section-part 2: development of a mathematical model for full-scale application [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 12(1):75-97.
[11] Cai Y, Chen S S. Dynamic response of a stack-cable system subjected to vortex-induced vibration [J]. Journal of Sound and Vibration, 1996,196(3):337-349.
[12] Fachinetti M L, de Langre E, Biolley F. Vortex shedding modeling using diffusive van der Pol oscillators [J]. C.R. Mecanique, 2002,330:451-456.
[13] Mathelin L, de langre E. Vortex-induced vibrations and waves under shear flow with a wake oscillator model [J]. European Journal of Mechanics B/Fluids, 2005, 24:478-490.
[14] 陈伟民, 张立武, 李敏. 采用改进尾流振子模型的柔性海洋立管的涡激振动响应分析 [J]. 工程力学, 2010, 27(5):240-246.
CHEN Wei-min, ZHANG Li-wu, LI Min. Prediction of vortex-induced vibration of flexible riser using improved wake-oscillator model [J]. Engineering Mechanics, 2010, 27(5):240-246.
[15] Farshidianfar A, Zanganeh H. A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio [J]. Journal of Fluids and Structures, 2010, 26:430-441.
[16] Violette R, de Langre E, Szydlowski J. A linear stability approach to vortex-induced vibrations and waves [J]. Journal of Fluids and Structures, 2010, 26:442-466.
[17] 高云, 宗智, 于馨. 均匀来流中Spar平台涡激运动响应研究[J]. 中国科学 物理学 力学 天文学, 2011, 41(2):132-139.
Gao Y, Zong Z, Yu X. Response analysis of vortex induced Spar motions in uniform currents [J]. Scientia Sinica Physics, Mechanics, Astronomy, 2011, 41:132-139.
[18] Srinil Narakorn. Analysis and prediction of vortex-induced vibrations of variable-tension vertical risers in linearly sheared currents [J]. Applied Ocean Research, 2011, 33:41-53.
[19] 郑中钦, 陈伟民. 结构与尾流非线性耦合涡激振动预测模型 [J]. 海洋工程, 2012, 30(4):37-54.
ZHENG Zhong-qin, CHEN Wei-min. Prediction of vortex-induced vibration of cylinder based on the nonlinear coupling of structure and wake oscillator [J]. The Ocean Engineering, 2012, 30(4):37-54.
[20] Grouthier C, Michelin S, Bourguet R, Modarres-Sadeghi Y, de Langre E. On the efficiency of energy harvesting using vortex-induced vibrations of cables [J]. Journal of Fluids and Structures, 2014, 49:427-440.
[21] Xu K, Ge Y, Zhang D. Wake oscillator model for assessment of vortex-induced vibration of flexible structures under wind action [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136:192-200.
[22] Facchinetti M L, de Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations [J]. Journal of Fluids and Structures, 2004, 19:123-40.
[23] Norberg C. Fluctuating lift on a circular cylinder: review and new measurements [J]. Journal of Fluids and Structures, 2003, 17:57-96.
[24] Facchinetti ML, de Langre E, Biolley F. Vortex-induced travelling waves along a cable [J]. European Journal of Mechanics B-Fluids, 2004, 23(1):199-208.
[25] de Langre E. Frequency lock-in is caused by coupled-mode flutter [J]. Journal of Fluids and Structures, 2006, 22:783-791.
[26] Violette R, de Langre E, Szydlowski J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments [J]. Computers and Structures, 2007, 85:1134-1141.
[27] Newman D J, Karniadakis G E. A direct numerical simulation study of flow past a freely vibrating cable [J]. Journal of Fluid Mechanics, 1997, 344:95-136.

PDF(1810 KB)

Accesses

Citation

Detail

段落导航
相关文章

/