采用数值模拟方法,对辽宁鞍山某在役钢筋混凝土冷却塔结构的地震易损性进行了评估。应用ABAQUS软件建立了分析模型;根据结构所在的场地条件选择了一系列合理的地震动记录,以考虑地震动的不确定性。选取了材料应变和地面峰值加速度作为结构地震需求参数和强度参数,并将结构的破坏状态划分为五个等级。分别输入单向、水平双向和三向地震作用,结合增量动力时程分析所得结构响应,基于对数正态分布假设,通过回归分析建立结构的概率地震需求模型,最终得到结构的地震易损性曲线;在此基础上对结构的抗倒塌安全储备进行了评估分析。分析结果表明:水平双向地震作用下冷却塔结构的损伤概率比单向地震作用时显著增加,若仅考虑单向地震作用会与实际产生较大偏差;由安全储备分析可知该结构满足“大震不倒”的要求。
Abstract
Using a numerical simulation method, the vulnerability of a RC cooling tower located in Liaoning Anshan was evaluated. The FE software ABAQUS was adopted to establish its analysis model. According to field conditions of the place where the structure was located, a series of reasonable ground motion records were selected to consider the uncertainty of earthquake. Material strain and peak ground acceleration (PGA) were taken as the structure seismic demand parameter and earthquake intensity parameter, and then the structure’s damage state was divided into five levels. Unidirectional, horizontal-bidirectional and three-directional seismic actions were exerted on the structure, respectively. Based on the incremental dynamic analysis and the lognormal distribution hypothesis, the probabilistic seismic demand model of the structure was established by means of the regression analysis, the structure’s seismic vulnerability curves were obtained. Furthermore, the structure’s anti-collapse security reserve was assessed. The results showed that the damage probability of the cooling tower structure under horizontal-bidirectional seismic action is much larger than that under unidirectional seismic action; vertical seismic action has little effect on the vulnerability of the cooling tower; the structure meets the requirement of “no collapse under strong earthquake” according to its safety margin analysis.
关键词
钢筋混凝土冷却塔 /
增量动力分析 /
地震易损性 /
多维地震 /
安全储备分析
{{custom_keyword}} /
Key words
RC cooling tower /
incremental dynamic analysis /
seismic vulnerability /
multi-dimensional seismic action /
safety margin analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李辉. 冷却塔考虑地基-基础-上部结构相互作用的地震反应分析[D]. 西安理工大学, 2010.
Li Hui. Analysis on seismic response of cooling tower considering subsoil-foundation-superstructure interaction [D]. Xi'an University of Technology, 2010. (in Chinese)
[2] 武际可, 壬大钧, 袁明武. 旋转壳的应力分析 [J]. 北京大学学报(自然科学版), 1978, 14(1): 99-127.
Wu Jike, Ren Dajun, Yuan Mingwu. Stress analysis of rotating shell [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1978, 14(1): 99-127. (in Chinese)
[3] Gran, Yang. Refined analysis of the seismic response of column-supported cooling tower [J]. Computers & Structures, 1980, 11(3): 225-231.
[4] 张妍. 超大型冷却塔随机地震响应及可靠度分析 [D]. 西安建筑科技大学, 2011.
Zhang Yan. Random earthquake response and reliability analysis of super-large cooling tower [D]. Xi’an University of Architecture and Technology, 2011. (in Chinese)
[5] Han, Tu. A finite element model for column-supported shells of revolution [J]. International Journal for Numerical Methods in Engineering, 1987, 24(10): 1951-1971.
[6] Vamvatsikos, Cornell. Incremental dynamic analysis [J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 491-514.
[7] 吴文朋, 李立峰, 王连华等. 基于IDA的高墩大跨桥梁地震易损性分析[J].地震工程与工程振动, 2012, 32(3): 117-123.
Wu Wenpeng, Li Lifeng, Wang Lianhua. Evaluation of seismic vulnerability of high-pier long-span bridge using incremental dynamic analysis [J]. Earthquake Engineering and Engineering Vibration, 2012, 32(3): 117-123. (in Chinese)
[8] 刘艳辉, 赵世春, 强士中.城市高架桥抗震性能水准的量化[J]. 西南交通大学学报, 2010, 45(1): 54-58.
Liu Yanhui, Zhao Shichun, Qiang Shizhong. Quantification of seismic performance levels for urban viaduct [J]. Journal of Southwest Jiaotong University, 2010, 45(1): 54-58. (in Chinese)
[9] Pan, Agrawal, Ghosn. Seismic fragility of continuous steel highway bridges in New York State [J]. Journal of Bridge Engineering, 2007, 12(6): 689-699.
[10] 焦驰宇. 基于性能的大跨斜拉桥地震易损性分析[D]. 同济大学, 2008.
Jiao Chiyu. Seismic vulnerability analysis of big span cable-stayed bridge based on performance [D]. Tongji University, 2008. (in Chinese)
[11] Hose, Seible. Performance evaluation database for concrete bridge components and systems under simulated seismic loads [M]. Pacific Earthquake Engineering Research Center, 1999.
[12] GB/T 24335-2009 建(构)筑物地震破坏等级划分[S]. 中国标准出版社,2009.
GB/T 24335-2009 Classification of earthquake damage to buildings and special structures[S]. China Standard Press, 2009. (in Chinese)
[13] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 清华大学出版社, 2003.
Guo Zhenhai, Shi Xudong. Reinforced concrete theory and analysis [M]. Tsinghua University Press, 2003. (in Chinese)
[14] Priestley. Displacement-based seismic assessment of reinforced concrete buildings [J]. Journal of Earthquake Engineering, 1997, 1(01): 157-192.
[15] GB 50010-2010混凝土结构设计规范[S].中国建筑工业出版社,2010.
GB 50010-2010 Code for design of concrete structures [S].China Architecture & Building Press,2010. (in Chinese)
[16] ACI 318, Building code requirements for structural concrete (ACI318-99) and commentary (ACI318R-99) [S]. American Concrete Institute, 1999.
[17] European Prestandard, ENV1992, European code 2: Design of concrete structures, European Committee for Standardization [S], 1992.
[18] 刘艳辉. 基于性能抗震设计理论的城市高架桥抗震性能研究[D]. 西南交通大学, 2008.
Liu Yanhui. Research on urban viaduct seismic behaviors in performance-based seismic design theory [D]. Southwest Jiaotong University, 2008. (in Chinese)
[19] Hoshikuma, Priestley. Flexural behavior of circular hollow columns with a single layer of reinforcement under seismic loading [R]. SSRP-2000/ 13.
[20] 韩强, 周雨龙, 杜修力. 钢筋混凝土矩形空心桥墩抗震性能[J]. 工程力学, 2015, 32(3): 28-40.
Han Qiang, Zhou Yulong, Du Xiuli. Seismic performance of reinforced concrete rectangular hollow bridge columns [J]. Engineering Mechanics, 2015, 32(3): 28-40. (in Chinese)
[21] 谷音, 钟华, 卓卫东. 基于性能的矮塔斜拉桥结构地震易损性分析[J]. 土木工程学报, 2012, 45(S1): 218-222.
Gu Yin, Zhong Hua, Zhuo Weidong. Lower-tower cable-stayed bridge seismic vulnerability analysis [J]. China Civil Engineering Journal, 2012, 45(S1): 218-222. (in Chinese)
[22] Mackie, Stojadinović. Fragility basis for California highway overpass bridge seismic decision making [M]. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 2005.
[23] Padgett, Nielson, DesRoches. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios [J]. Earthquake Engineering and Structural Dynamics, 2008, 37(5): 711-726.
[24] ATC-63,Quantification of building seismic performance factors [S]. Applied Technology Council, 2010.
[25] Haselton, Liel, Deierlein, et al. Seismic collapse safety of reinforced concrete buildings. I: Assessment of ductile moment frames [J]. Journal of Structural Engineering, 2010, 137(4): 481-491.
[26] GB 50191-2012 构筑物抗震设计规范[S]. 中国计划出版社,2012.
GB 50191-2012 Code for seismic design of special structures[S]. China Planning Press, 2012. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}