基于SEA赋权图的舱室噪声传递路径分析

张文春1, 段树林1, 邢辉1, 闫锦2,3 宋玉超1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 164-169.

PDF(1219 KB)
PDF(1219 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 164-169.
论文

基于SEA赋权图的舱室噪声传递路径分析

  • 张文春1, 段树林1, 邢辉1, 闫锦2,3 宋玉超1
作者信息 +

SEA weighted digraph method for vibro-acoustic energy transmission path analysis in cabins

  • ZHANG Wenchun 1, DUAN Shulin 1, XING Hui1, YAN Jin 2 SONG Yuchao1
Author information +
文章历史 +

摘要

振声能量传递路径是船舶舱室噪声控制的重要依据之一。对中高频振声问题采用统计能量分析(SEA)求解,引入SEA系统传递路径的概念,并结合图论提出了舱室噪声传递的SEA赋权图法。将SEA系统等效为结点和有向边组成的有向图GSEA,噪声传递路径问题转变为求解GSEA中的最大权重路径问题,通过偏离算法得到的K主要路径即为能量传递的主路径。以某船机舱传递到住舱中的能量传递路径为例,首先确定不同振声源在目标舱室中产生的噪声分量,选取对目标舱室影响最大子系统为路径分析对象,然后使用SEA赋权图法求解主要传递路径,从而揭示能量在结构和声腔中的传播机理,为船舶降噪优化提供指导。

Abstract

Vibro-acoustic energy transmission path is one of important bases for noise control in ship cabins. Based on the definition of the statistical energy analysis (SEA) model often used for mid and high frequency domain, the SEA weighted digraph was introduced to solve ship cabin noise transmission problems. A SEA system was equivalent to a digraph GSEA consist of nodes and directed edges, a noise transmission path problem was converted into to solve the maximum weight path in GSEA . Similar to the methodology in the shortest path graph theory, the path deviation algorithm was adopted to find   path with the maximum weight, it was called   dominant transmission path in GSEA. An example in a ship was used to demonstrate the application of the proposed method. Noise contribution of different sources to an accommodation cabin was determined firstly, and the subsystems with higher energy level were chosen as the objects to be analyzed. The dominant transition path was solved with the SEA weighted digraph. The results revealed the mechanism of energy transmission through structures and cabins, and provided a guide for ship denoising optimization.


关键词

统计能量分析 / 主要路径 / 传递路径分析 / 图论 / 舱室噪声

Key words

statistical energy analysis (SEA) / dominant path / transmission path analysis / graph theory / cabin noise.

引用本文

导出引用
张文春1, 段树林1, 邢辉1, 闫锦2,3 宋玉超1. 基于SEA赋权图的舱室噪声传递路径分析[J]. 振动与冲击, 2017, 36(23): 164-169
ZHANG Wenchun 1, DUAN Shulin 1, XING Hui1, YAN Jin 2 SONG Yuchao1. SEA weighted digraph method for vibro-acoustic energy transmission path analysis in cabins[J]. Journal of Vibration and Shock, 2017, 36(23): 164-169

参考文献

[1] IMO. Resolution MSC. 337(19): Adoption of the Code on Noise Levels on Board Ships. London, 2012.
[2] 程广利, 伍先俊和朱石坚. 基于AutoSEA的船舶噪声统计能量分析仿真 [J]. 海军工程大学学报, 2005, 17(3): 70-73.
Cheng G, Wu X and Zhu S Statistical energy analysis of ship noise based on AutoSEA [J]. Journal of Naval University of Engineering, 2005, 17(3): 70-73.
[3] Xie S L, Zhang Y H, Xie Q, et al. Identification of high frequency loads using statistical energy analysis method [J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 291-306.
[4] 张磊, 曹跃云, 杨自春等. 船舶噪声源的传递率矩阵识别方法及试验验证 [J]. 振动工程学报, 2013, 26(2): 291-297.
Zhang L, Cao Y, Yang Z, et al. Transmissibility matrix method for identification of ship noise source and corresponding test verification [J]. Journal of Vibration Engineering, 2013, 26(2): 291-297.
[5] 李思纯, 宫元彬, 时胜国等. 舱段模型频率耦合噪声源的分离量化[J]. 哈尔滨工程大学学报, 2016, 37(3):368-375.
Li S, Gong Y, Shi S, et al. Separation and quantification of frequency coupled noise sources of submarine cabin [J]. Journal of Harbin Engineering University, 2016, 37(3):368-375.
[6] Craik R J M. Sound transmission through buildings using statistical energy analysis [M]. London: Gower, 1996.
[7] Magrans F X. Definition and calculation of transmission paths within an SEA framework [J]. Journal of Sound and Vibration, 1993, (165): 277-283.
[8] 高处, 杨德庆. 船舶舱室噪声传递路径分析的声振熵赋权图法[J]. 上海交通大学学报, 2014, 48(4): 469-474.
Gao C, Yang D. Vibroacoustical entropy weighted graph method for sound transmission path analysis of ship cabin noise [J]. Journal of Shanghai Jiao Tong University, 2014, 48(4): 469-474.
[9] Guasch O and Cortes L. Graph theory applied to noise and vibration control in statistical energy analysis models [J]. J Acoust Soc Am, 2009, 125(6): 3657-3672.
[10] Guasch O and Aragonès À. Finding the dominant energy transmission paths in statistical energy analysis [J]. Journal of Sound and Vibration, 2011, 330(10): 2325-2338.
[11] Lyon R H. Statistical energy analysis of dynamic systems: Theory and applications [M]. Massachusetts: MTI Press, 1975.
[12] Nagamochi H, Nishimura K and Ibaraki T. Computing all small cuts in an undirected network [J]. SIAM J. Discrete Math, 1997, 10: 469-481.
[13] Yen J Y. Finding the K Shortest Loopless Paths in a Network [J]. Management Science, 1971, 17(11): 712-716.
[14]徐涛, 丁晓璐和李建伏. K最短路径算法综述 [J]. 计算机工程与设计, 2013, 34(11): 3900-3906.
Xu T, Ding X and Li J. Review of K shortest paths algorithms [J]. Computer Engineering and Design, 2013, 34(11): 3900-3906.
[15] Aragonès À and Guasch O. Ranking paths in statistical energy analysis models with non-deterministic loss factors [J]. Mechanical Systems and Signal Processing, 2015, 52-53: 741-753.
[16] Galbrun L. The prediction of airborne sound transmission between two rooms using first-order flaking paths.[J]. Applied Acoustics, 2008, 69(12): 1332-1342.
[17] Martins E Q V, Pascoal M M B and E. Santos J L E. Deviation algorithms for ranking shortest paths [J]. International Journal of Foundations of Computer Science, 1999, 10(3): 247-261.
[18] 温华兵, 彭子龙, 刘林波. 基于FE_SEA混合法的空心阻振质量阻振性能研究[J]. 振动与冲击, 2015, 34(5): 174-178.
Wen H., Peng Z., Liu L. Vibration-isolating performance of hollow-square-steel blocking mass based on hybrid FE-SEA method [J]. Journal of Vibration and Shock, 2015, 34(5): 174-178.

PDF(1219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/