材料内阻对旋转复合材料轴动力学稳定性的影响研究

任勇生,时玉艳,张玉环

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 181-186.

PDF(745 KB)
PDF(745 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 181-186.
论文

材料内阻对旋转复合材料轴动力学稳定性的影响研究

  • 任勇生,时玉艳,张玉环
作者信息 +

Effects of internal damping on dynamic stability of a rotating composite shaft

  • RENYongsheng, SHI Yuyan, ZHANG Yuhuan
Author information +
文章历史 +

摘要

由于复合材料与金属材料相比,具有更为突出的阻尼耗散能力,超临界旋转复合材料轴在材料内阻的作用下更容易产生不稳定自激振动。本文从复合材料本构关系、应变-位移关系基本方程出发,基于Bernoulli-Euler梁理论,并考虑复合材料的粘弹性阻尼耗散特性,在导出旋转复合材料轴的动能、势能和内阻耗散能的基础上,采用Hamilton原理建立了转子系统的运动微分方程,采用Galerkin法对复数形式的弯曲方程进行求解,导出转子系统的特征方程。通过数值分析得到固有频率-转速曲线和阻尼-转速曲线,求得了临界转速和失稳阈。研究了铺层角、长径比和铺层方式的影响。本文模型结果的正确性,通过与文献结果对比,得到了验证。

Abstract

As composite material has a higher damping capacity than metallic materials do, a supercritical rotating composite shaft under the action of material’s internal damping is easier to have an unstable self-excited vibration. Here, based on the basic equations for constitutive relations and strain-displacement relations of composite material, the kinetic energy, the potential energy, and the internal damping dissipative energy of the rotor system including the rotating composite shaft were derived with Bernoulli-Euler beam theory and considering dissipative characteristics of viscoelastic damping. The rotor system’s equations of motion were deduced using Hamilton principle. Galerkin method was used to solve the rotor system’s equations of motion in complex coordinates to derive the characteristic equations of the rotor system. The rotor system’s natural frequency versus rotating speed curve and damping versus rotating speed curve were obtained through numerical analysis. From these curves, the critical rotating speed and instability threshold of the system were gained. The effects of ply angle, stacking sequences, and ratio of length to outer radius on the system’s critical rotating speed and instability threshold were analyzed .The correctness of the dynamic model built here for the rotor system was verified by comparing the calculated results of critical speed and damping of the rotor system with those available in literatures.
 

关键词

复合材料轴 / 内阻 / 振动稳定性

Key words

rotating composite shaft / internal damping / dynamic stability

引用本文

导出引用
任勇生,时玉艳,张玉环. 材料内阻对旋转复合材料轴动力学稳定性的影响研究[J]. 振动与冲击, 2017, 36(23): 181-186
RENYongsheng, SHI Yuyan, ZHANG Yuhuan. Effects of internal damping on dynamic stability of a rotating composite shaft[J]. Journal of Vibration and Shock, 2017, 36(23): 181-186

参考文献

[1]戴德沛. 阻尼减振降噪技术[M].西安:西安交通大学出版社,1988.
Dai Depei. Vibration and noise control with damping technology[M]. Xi’an: Xi’an Jiao Tong University Press, 1988.
[2]Kimball Jr A L. Internal friction theory of shaft whirling[J]. General Electric Review,1924, 27:244-251.
[3]Gunter E J. Rotor-bearing stability[C]. Proceedings of the First Turbo-machinery Symposium, 1972, 119-141.
[4]Vance J. M., Lee J. Stability of high speed rotors with internal friction[J]. ASME Journal of Engineering for Industry, 1974, 96: 960-968.
[5]Melanson J, Zu J W. Free vibration and stability analysis of internally damped rotating shafts with general boundary conditions[J]. ASME Journal of Vibration and Acoustics, 1998, 120: 776-783.
[6]Montagnier O, Hochard Ch. Dynamic instability of supercritical driveshafts mounted on dissipative supports-effects of viscous and hysteretic internal damping[J]. Journal of Sound and Vibration, 2007, 305:378-400.
[7]Singh S P, Gupta K. Composite shaft rotordynamic analysis using a layerwise theory[J]. Journal of Sound and Vibration, Vol. 91, Issue 5, 1996, p. 739-756.
[8]Kim W, Argento A, Scott R A. Forced vibration and dynamic stability of a rotating tapered composite Timoshenko shaft: bending motions in end-milling operations[J]. Journal of Sound and Vibration, 2001, 246(4): 563-600.
[9]Montagnier O, Hochard Ch. Dynamics of a supercritical composite shaft mounted on viscoelastic supports[J]. Journal of Sound and Vibration, 2014, 333:470-484.
[10]Sino R, Baranger T N, Chatelet E, Jacque T G. Dynamic analysis of a rotating composite shaft[J].Composites Science and Technology, 2008, 68:337-345.
[11]Saravanos D A, Varelis D, Plagianakos T S, et al. A shear beam finite element for the damping analysis of tubular laminated composite beams[J]. Journal of Sound and Vibration, 2006,291:802-823.
[12]Yongsheng Ren, Xingqi Zhang, Yanghang Liu, Xiulong Chen. An analytical model for dynamic simulation of the composite rotor with internal damping[J]. Journal of Vibroengineering, 2014, 16(8):4002-4016.
[13]Zinberg H, Symonds M F. The development of an advanced composite tail rotor drive shaft[C]. Presented at the 26th Annual National Forum of the American Helicopter Society, June,1970, Washington, DC.
[14]dos Reis H L M, Goldman R B and Verstrate P H. Thin-walled laminated composite cylindrical tubes; part III-critical speed analysis[J]. J. Compos. Technol. Res.,1987,9:58-62.
[15]Chang M Y, Chen J K, Chang C Y. A simple spinning laminated composite shaft model[J]. International Journal of Solids and Structures, 2004, 41:637-662.
[16]Singh S P, Gupta K. Composite shaft rotordynamic analysis using a layerwise theory[J]. Journal of Sound and Vibration, 1996, 191 (5):739-756.

PDF(745 KB)

Accesses

Citation

Detail

段落导航
相关文章

/