轴向超声振动磨削硬脆性材料表面粗糙度建模研究

何玉辉1,2,万荣桥1,2,周剑杰1,2,唐进元1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 194-200.

PDF(960 KB)
PDF(960 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 194-200.
论文

轴向超声振动磨削硬脆性材料表面粗糙度建模研究

  • 何玉辉1,2,万荣桥1,2,周剑杰1,2,唐进元1,2
作者信息 +

Modeling for surface roughness of hard and brittle materials in axial ultrasonic vibration grinding

  • HE Yu-hui, WAN Rong-qiao, ZHOU Jian-jie,TANG Jin-yuan
Author information +
文章历史 +

摘要

假设磨粒切削沟槽轮廓截面为一系列顶角等于磨粒的锥顶角、深度服从瑞利分布的三角形,并考虑磨粒运动轨迹重叠效应的影响,建立了轴向超声振动磨削硬脆性材料的表面粗糙度模型。以K9光学玻璃为实验材料,对比分析了未考虑和考虑了磨粒运动轨迹重叠效应的表面粗糙度模型的拟合精度,结果表明:后者表征超声磨削表面粗糙度更接近实验结果,且超声磨削表面粗糙度模型反映的磨削参数和振动参数对表面粗糙度的影响趋势与实验结果相一致,从而验证了所建模型的正确性和有效性。

Abstract

Assuming the profile cross section of grain grinding grooves is a series of triangles whose vertex angle is equal to the cone angle of grinding particle and the grooves’ depth obeys Rayleigh distribution, considering the effects of grinding particles’ trajectories overlapping, the surface roughness model of hard and brittle materials in axial ultrasonic vibration grinding was established. K9 optical glass was taken as the test material, the fitting accuracies of the model without the overlapping effect of grinding particle trajectories and the one with this effect were analyzed contrastively. The results showed that the latter to characterize the surface roughness of ultrasonic grinding is more close to the test results; the effect trend of grinding parameters and vibration parameters on surface roughness reflected by the latter are consistent with the test results; so, the correctness and effectiveness of the proposed model is verified.

关键词

瑞利分布 / 硬脆性材料 / 表面粗糙度 / 轨迹重叠 / 超声磨削

Key words

Rayleigh distribution / hard and brittle materials / surface roughness / trajectory overlapping / ultrasonic grinding

引用本文

导出引用
何玉辉1,2,万荣桥1,2,周剑杰1,2,唐进元1,2. 轴向超声振动磨削硬脆性材料表面粗糙度建模研究[J]. 振动与冲击, 2017, 36(23): 194-200
HE Yu-hui, WAN Rong-qiao, ZHOU Jian-jie,TANG Jin-yuan. Modeling for surface roughness of hard and brittle materials in axial ultrasonic vibration grinding[J]. Journal of Vibration and Shock, 2017, 36(23): 194-200

参考文献

[1] 刘小君, 方新燕, 等. 产品性能与加工表面质量设计[J]. 合肥工业大学学报(自然科学版), 2005, 28(7): 781-783.
   LIU Xiao-jun, Fang Xin-yan,et al. Functional property of products and its relationship with manufactured surfaces[J]. Journal of Hefei University of Technology(Natural Science), 2005, 28(7):781   -783.
[2] 周锦进, 李洪友, 等. 齿轮表面质量对其使用性能和寿命影响的研究[J]. 机械科学与技术, 2004, 23(4):
   468-470.
   ZHOU Jin-jin, LI Hong-you,et al. On the influence of a Gear's surface quality on its performance and   lifetime[J]. Mechanical Science and Technology, 2004, 23(4):468-470.
[3] 童景琳, 赵波, 等. 二维超声振动磨削陶瓷的表面质量试验研究[J]. 振动与冲击, 2007, 26(10):177-179.
   TONG Jing-lin, ZHAO Bo,et al. Study on surface roughness of nanocomposite ceramics with 2-dmensional ultrasonic vibration grinding[J]. Journal of Vibration and Shock, 2007, 26(10):177-179.
[4] Churi N J, Pei Z J,Treadwell C. Experimental investigations on rotary ultrasonic machining of hard-to   -machine materials[C].TMS Annual Meeting,2007:139-144.
[5] Wu Y B, Liang Z Q, Fujimoto M, et al. Surface formation characteristics in elliptical ultrasonic assisted grinding of monocrystal silicon[J]. International Journal of Nanomanufacturing, 2011,7(3-4):189   -198.
[6] 杨鑫宏, 韩杰才. 脆性光学材料的超声磨削实验研究[J]. 光学技术, 2007, 33(1):65-67.
   YANG Xin-hon HAN Jie-cai. Experimental study on ultrasonic vibration grinding of brittle optical materials[J]. Optical Technique, 2007, 33(1):65-67.
[7] 闫艳燕. 纳米复相陶瓷二维超声振动辅助磨削机理及其表面质量研究[D]. 上海:上海交通大学, 2008.
   YAN Yan-yan. Study on two dimensional ultrasonic vibration assisted grinding mechanism of nanocomposite ceramics and its surface quality[D]. Shanghai: Shanghai Jiao Tong University, 2008.
[8] 王兴盛, 康敏, 等. 镜片精密车削表面粗糙度预测[J]. 机械工程学报, 2013, 49(15):192-198.
   WANG Xing-sheng, KANG Min,et al. Prediction model of surface roughness in lenses precison  turning[J]. Journal of Mechanical Engineering, 2013, 49(15):192-198.
[9] Alao A-R, Konneh M. Surface finish predicition models for precision grinding of silicon[J]. The International Journal of Advanced Manufacturing Technology,2011,58(9-12):949-67.
[10] 唐林虎, 黄建龙, 等. 干式硬态车削淬硬工具钢Cr12MoV表面粗糙度试验与预测模型[J]. 兰州理工大     学学报, 2012, 38(2):34-36.
   TANG Lin-hu, HUANG Jian-long, et al. Surface roughness experiment and prediction model of  hardened tool steel Cr12MoV after dry hard turning[J]. Journal of Lanzhou University of Technology.    2012, 38(2):34-36.
[11] Zain A M, Haron H, Sharif S. Prediction of surface roughness in the end milling machining using artificial neural network[J]. Expert Systems with Applications, 2010, 37(2):1755-1768.
[12] Pal S K, Chakraborty D. Surface roughness prediction in turning using artificial neural network[J]. Neural Computing & Applications, 2005, 14(14):319-324.
[13] Agarwal S, Rao P V. Modeling and prediction of surface roughness in ceramic grinding[J].  International Journal of Machine Tools & Manufacture,2010, 50(12): 1065-1076.
[14] Bhaduri D, Soo S, Aspinwall D, et al. A study on ultrasonic assisted creep feed grinding of nickel based superalloys [J]. Procedia CIRP, 2012, 1: 359-364.
[15] 李伯民, 赵波. 现代磨削技术[M]. 北京: 机械工业出版社,2003:12-44.
    LI Bo-min, ZHAO Bo. Modern Grinding Technology [M]. Beijing:China Machine Press, 2003:12-44.
[16] Hecker R L, Liang S Y, Wu X J, et al. Grinding force and power modeling based on chip  thickness analysis[J]. International Journal of Advanced Manufacturing Technology, 2007, 33(5-6):449-    459.
[17] Agarwal S, Rao P V. Predictive modeling of force and power based on a new analytical undeformed    chip thickness in ceramic grinding[J]. International Journal of Machine Tools & Manufacture, 2012,56:    59-68.
[18] 何玉辉, 周群, 等. 轴向超声振动辅助磨削的磨削力研究[J]. 振动与冲击, 2016, 35(4):170-176.
HE Yu-hui, ZHOU Qun, et al.Grinding force of axial ultrasonic vibration assisted grinding[J]. Journal    of Vibration and Shock, 2016, 35(4):170-176.
[19] 郎献军, 何玉辉, 等. 基于磨粒突出高度为瑞利分布的磨削力模型[J]. 中南大学学报(自然科学版), 2014,45(10):3386-3391.
LANG Xian-jun, HE Yu-hui, et al.Grinding force model based on prominent height of abrasive submitted to Rayleigh distribution[J]. Journal of Central South University(Science and Technology), 2014,45(10):3386-3391.
[20] 张洪丽. 超声振动辅助磨削技术及机理研究[D]. 济南:山东大学, 2007.
ZHANG Hong-li. Study on the Technology and Mechanism of Ultrasonic Vibration Assisted Grinding    [D]. Jinan:Shan Dong University,2007.

PDF(960 KB)

Accesses

Citation

Detail

段落导航
相关文章

/