星形节点周期性蜂窝结构的面内动力学响应特性研究

韩会龙,张新春

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 223-231.

PDF(2172 KB)
PDF(2172 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 223-231.
论文

星形节点周期性蜂窝结构的面内动力学响应特性研究

  • 韩会龙,张新春
作者信息 +

In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures

  • HAN Hui-long, ZHANG Xin-chun
Author information +
文章历史 +

摘要

利用显式动力有限元法数值研究了冲击载荷下星形节点周期性蜂窝结构的面内冲击动力学响应特性。在保证各胞元壁长不变的前提下,通过改变胞壁厚度、内凹箭头节点间夹角和韧带长度等微结构参数,首先建立了星形节点周期性蜂窝结构的有限元模型。在此基础上,讨论了冲击速度和微结构参数对星形蜂窝材料的宏/微观变形、密实应变和动态冲击强度的影响。结果表明,由于胞壁受膜力和弯矩的耦合作用,在中、低速冲击载荷下,试件表现出负泊松比材料在轴向压缩时的“颈缩”现象。基于能量效率法和一维冲击波理论,给出了星形蜂窝结构密实应变和动态平台应力的经验公式,以预测多胞材料的动态承载能力。本文的研究将为拉胀多胞材料冲击动力学性能的多目标优化设计提供新的设计思路。

Abstract

The in-plane dynamic impact response behaviors of periodic 4-point star-shaped honeycomb structures were numerically studied by means of the explicit dynamic finite element (EDFE) simulation method. Under the promise of cell element’s wall length keeping unchanged, the FE model of periodic 4-point star-shaped honeycombs was established by changing micro-cell structure parameters including cell wall thickness, angle between inner concave arrow nodes, and ligament length. Then the influences of impact velocity and micro-cell structural parameters on in-plane macro-/micro-deformation behaviors, densification strains and dynamic impact intensities of star-shaped honeycombs were discussed in detail. The results showed that the specimens reveal a “necking” phenomenon of negative Poisson ratio materials under impact loading with low or moderate velocity, it is mainly due to cell walls bear the combination of membrane force and bending moment; based on the energy absorption efficiency method and the one-dimensional  shock wave theory, empirical formulae for densification strain and dynamic plateau stress of the honeycombs were deduced to predict the dynamic load-bearing capacity of star-shaped honeycombs. The results provided a new idea for the multi-objective optimization design of dynamic impact properties of stretch cell materials.

关键词

星形节点蜂窝结构 / 负泊松比 / 密实应变 / 平台应力 / 微结构

Key words

 4-point star-shaped honeycomb structure / negative Poisson ratio (NPR) / densification strain / plateau stress / micro-cell structure

引用本文

导出引用
韩会龙,张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究[J]. 振动与冲击, 2017, 36(23): 223-231
HAN Hui-long, ZHANG Xin-chun. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017, 36(23): 223-231

参考文献

[1] 余同希, 邱信明. 冲击动力学[M]. 北京: 清华大学出版社, 2011.
    YU Tong-xi, QIU Xin-ming. Impact dynamics[M]. Beijing: Tsinghua University Press, 2011.
[2] Gibson L J, Ashby M F. Cellular solids: structure and properties[M]. Cambridge: Cambridge University Press, 1997.
[3] Theocaris P S, Stavroulakis G E, Panagiotopoulos P D. Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach[J]. Archive of Applied Mechanics, 1997, 67(4): 274-286.
[4] Reis F D, Ganghoffer J F. Equivalent mechanical properties of auxetic lattices from discrete homogenization[J]. Computational Materials Science, 2012, 51(1): 314-321.
[5] 贠昊, 邓子辰, 朱志韦. 弹性波在星形节点周期结构蜂窝材料中的传播特性研究[J]. 应用数学和力学, 2015, 36(8): 814-820.
    YUN Hao, DENG Zi-chen, ZHU Zhi-wei. Bandgap properties of periodic 4-point star-shaped honeycomb materials with negative Poisson’s ratios[J]. Applied Mathematics and Mechanics, 2015, 36(8): 814-820.
[6] Gong X B, Huang J, Scarpa F, et al. Zero Poisson’s ratio cellular structure for two-dimensional morphing applications[J]. Composite Structures, 2015, 134: 384-392.
[7] Li D, Dong L, Lakes R S. A unit cell structure with tunable Poisson's ratio from positive to negative[J]. Materials Letters, 2016, 164: 456-459.
[8] 张新春, 祝晓燕, 李娜. 六韧带手性蜂窝结构的动力学响应特性研究[J]. 振动与冲击, 2016, 35(8): 1-7, 26.
ZHANG Xin-chun, ZHU Xiao-yan, LI Na. A study of the dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of vibration and shock, 2016, 35(8): 1-7, 26.
[9] Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs—a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182.
[10] Zhang X C, An L Q, Ding H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient[J]. Journal of Sandwich Structures and Materials, 2014, 16(2): 125-147.
[11] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams. Part Ⅱ–’shock’ theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230.
[12] Zhang X C, An L Q, Ding H M, et al. Influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio[J]. Journal of Sandwich Structures and Materials, 2015, 17(1): 26-55.
[13] Sun D Q, Zhang W H, Zhao Y C, et al. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs[J]. Composite Structures, 2013, 96: 726-735.
[14] Qiu X M, Zhang J, Yu T X. Collapse of periodic planar lattices under uniaxial compression, part II: Dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10/11): 1231-1241.
[15] Fan J, Zhang J, Wang Z, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams[J]. Materials Science and Engineering A, 2013, 561(3): 352-361.
[16] Zhang J J, Wang Z H, Zhao L M. Dynamic response of functionally graded cellular materials based on the Voronoi model[J]. Composites Part B, 2016, 85: 176-187.

PDF(2172 KB)

Accesses

Citation

Detail

段落导航
相关文章

/